Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated July 31, 2023
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 5))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 4))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 5.0 WS_Z_THRESH = 4.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1845 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460617/zen.2460617.25245.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1845 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460617/zen.2460617.25245.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=-10, vmax=10, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_z_thresh=1.5, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = np.nanmean(np.where(flags, np.nan, zscore), axis=0)
ztseries = np.nanmean(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=.25, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neightbors of prior flags.')
# flag whole integrations or channels
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
31.327% of waterfall flagged to start. 33.838% of waterfall flagged after flagging z > 5.0 outliers.
34.374% of waterfall flagged after watershed flagging on z > 4.0 neightbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 8 channels. Flagging 82 channels previously flagged 25.00% or more. Flagging 93 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 14 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 39.627% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra():
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(-11, 11)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging():
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1845 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460617/zen.2460617.25245.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460617/2460617_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460617.2544595785, 2460617.2545714267], [2460617.2553543635, 2460617.2554662116], [2460617.255801756, 2460617.255913604], [2460617.2563609965, 2460617.2565846927], [2460617.256920237, 2460617.257032085], [2460617.257591326, 2460617.257703174], [2460617.2581505664, 2460617.2583742626], [2460617.259269047, 2460617.259380895], [2460617.26027568, 2460617.260946769], [2460617.2618415537, 2460617.262177098], [2460617.2627363387, 2460617.263183731], [2460617.264637756, 2460617.2647496043], [2460617.2649733005, 2460617.2650851486], [2460617.265308845, 2460617.265420693], [2460617.265644389, 2460617.2657562373], [2460617.2658680854, 2460617.2660917817], [2460617.2667628704, 2460617.2668747185], [2460617.267433959, 2460617.2679931996], [2460617.268328744, 2460617.268440592], [2460617.2687761365, 2460617.2688879846], [2460617.2701183134, 2460617.2703420096], [2460617.2704538577, 2460617.270789402], [2460617.27090125, 2460617.2711249464], [2460617.271572339, 2460617.271684187], [2460617.277052896, 2460617.277164744], [2460617.280072795, 2460617.2802964915], [2460617.2804083396, 2460617.2805201877], [2460617.280632036, 2460617.280855732], [2460617.2844348713, 2460617.2845467194], [2460617.2890206436, 2460617.2891324917], [2460617.289468036, 2460617.2896917323], [2460617.292935327, 2460617.2931590234], [2460617.2942775046, 2460617.2943893527], [2460617.296514467, 2460617.296850011], [2460617.3024424165, 2460617.3025542647], [2460617.304343834, 2460617.304455682], [2460617.305238619, 2460617.305350467], [2460617.3055741633, 2460617.3056860114], [2460617.31049548, 2460617.310719176], [2460617.3140746197, 2460617.314186468], [2460617.3155286447, 2460617.315640493], [2460617.3203381137, 2460617.320449962], [2460617.324140949, 2460617.3242527973], [2460617.326042367, 2460617.3262660634], [2460617.3279437847, 2460617.328167481], [2460617.328503025, 2460617.3287267215], [2460617.3315229244, 2460617.3316347725], [2460617.3333124937, 2460617.33353619], [2460617.333648038, 2460617.3338717343], [2460617.334319127, 2460617.334542823], [2460617.336556089, 2460617.336667937], [2460617.337450874, 2460617.337786418], [2460617.3410300133, 2460617.3411418614], [2460617.3412537095, 2460617.3413655576], [2460617.34181295, 2460617.3420366463], [2460617.342707735, 2460617.3429314313], [2460617.343155127, 2460617.3436025195], [2460617.344273608, 2460617.3443854563], [2460617.3496423173, 2460617.350201558], [2460617.3507607984, 2460617.351096343], [2460617.352102976, 2460617.3525503683], [2460617.3529977608, 2460617.353109609], [2460617.3569124443, 2460617.3570242925], [2460617.3601560392, 2460617.3602678874], [2460617.3641825714, 2460617.3645181158], [2460617.366978774, 2460617.367090622], [2460617.3704460654, 2460617.3706697617], [2460617.373354116, 2460617.373465964], [2460617.3765977114, 2460617.3767095595], [2460617.3779398883, 2460617.3781635845], [2460617.3821901167, 2460617.382525661], [2460617.3853218635, 2460617.3855455597], [2460617.3864403446, 2460617.386664041], [2460617.386775889, 2460617.386887737], [2460617.3976251553, 2460617.3977370034], [2460617.399750269, 2460617.399862117], [2460617.4020990795, 2460617.4022109276], [2460617.4084744216, 2460617.408809966], [2460617.4091455103, 2460617.4092573584], [2460617.416527485, 2460617.416639333], [2460617.4177578143, 2460617.4180933586], [2460617.4196592323, 2460617.4197710804], [2460617.4207777134, 2460617.4211132578], [2460617.421225106, 2460617.421448802], [2460617.4231265234, 2460617.4233502196], [2460617.4240213083, 2460617.4243568527], [2460617.429166321, 2460617.4293900174], [2460617.4339757897, 2460617.434199486], [2460617.436100904, 2460617.4363246], [2460617.437107537, 2460617.437219385], [2460617.4399037394, 2460617.4401274356], [2460617.443482879, 2460617.4439302715], [2460617.4461672334, 2460617.4462790815], [2460617.4471738664, 2460617.4472857146], [2460617.4504174613, 2460617.4505293095], [2460617.450864854, 2460617.450976702], [2460617.451871487, 2460617.451983335], [2460617.453996601, 2460617.4543321454], [2460617.454891386, 2460617.455115082], [2460617.457128348, 2460617.457240196], [2460617.464510323, 2460617.4648458674], [2460617.468984247, 2460617.4695434878], [2460617.4713330576, 2460617.471556754], [2460617.4727870827, 2460617.4737937157], [2460617.4777083998, 2460617.478043944], [2460617.4781557918, 2460617.478379488], [2460617.4798335135, 2460617.4799453616], [2460617.4826297164, 2460617.4828534126], [2460617.484419286, 2460617.484531134], [2460617.486656248, 2460617.4872154887], [2460617.489228755, 2460617.490123539], [2460617.491913109, 2460617.492024957], [2460617.4941500714, 2460617.494709312], [2460617.494933008, 2460617.4950448563], [2460617.4977292106, 2460617.4984002993], [2460617.499071388, 2460617.499183236], [2460617.5017557424, 2460617.5020912867], [2460617.5026505273, 2460617.5027623754], [2460617.503209768, 2460617.503321616], [2460617.5055585783, 2460617.5057822745], [2460617.5064533628, 2460617.506900755], [2460617.508802173, 2460617.5090258694], [2460617.5110391355, 2460617.5112628317], [2460617.5141708823, 2460617.5143945785], [2460617.5151775153, 2460617.5152893635], [2460617.515848604, 2460617.5161841484], [2460617.5162959965, 2460617.5165196927], [2460617.519315895, 2460617.5195395914], [2460617.521217313, 2460617.5216647056], [2460617.5237898193, 2460617.5239016674], [2460617.52434906, 2460617.524572756], [2460617.5277045034, 2460617.5279281996], [2460617.528375592, 2460617.5285992883], [2460617.530724402, 2460617.53083625], [2460617.532402124, 2460617.53262582], [2460617.537658985, 2460617.537770833], [2460617.5395604027, 2460617.539784099], [2460617.542021061, 2460617.542356605], [2460617.5435869345, 2460617.5436987826], [2460617.543922479, 2460617.544034327], [2460617.545152808, 2460617.545264656], [2460617.546494985, 2460617.5468305293], [2460617.5469423775, 2460617.547613466], [2460617.548620099, 2460617.5487319473], [2460617.5489556435, 2460617.5490674917], [2460617.551975542, 2460617.5520873903], [2460617.552534783, 2460617.552870327], [2460617.5530940234, 2460617.5532058715], [2460617.555778378, 2460617.5558902263], [2460617.5563376187, 2460617.556449467], [2460617.5576797957, 2460617.557791644], [2460617.5596930617, 2460617.55980491], [2460617.559916758, 2460617.560028606], [2460617.5626011123, 2460617.5627129604], [2460617.563160353, 2460617.563272201], [2460617.5648380746, 2460617.5649499227], [2460617.565061771, 2460617.565173619], [2460617.5656210114, 2460617.5657328595], [2460617.5664039482, 2460617.5665157964], [2460617.567186885, 2460617.567298733], [2460617.568529062, 2460617.56864091], [2460617.568752758, 2460617.5688646063], [2460617.5689764544, 2460617.5690883026], [2460617.569647543, 2460617.5697593912], [2460617.571437113, 2460617.571548961], [2460617.5718845055, 2460617.5719963536], [2460617.572331898, 2460617.572555594], [2460617.5730029866, 2460617.5731148347], [2460617.573226683, 2460617.573450379], [2460617.5745688598, 2460617.574904404], [2460617.575687341, 2460617.575799189], [2460617.5763584296, 2460617.576582126], [2460617.5771413664, 2460617.5772532145], [2460617.577700607, 2460617.577812455], [2460617.5780361514, 2460617.5782598476], [2460617.5783716957, 2460617.578483544], [2460617.578595392, 2460617.57870724], [2460617.5797138726, 2460617.5798257207], [2460617.580273113, 2460617.5803849613], [2460617.5806086576, 2460617.5807205057], [2460617.58105605, 2460617.581167898], [2460617.5812797463, 2460617.5813915944], [2460617.5815034425, 2460617.5817271387], [2460617.583069316, 2460617.583181164], [2460617.5836285567, 2460617.583740405], [2460617.5845233416, 2460617.5846351897], [2460617.584747038, 2460617.584970734], [2460617.585306278, 2460617.585418126], [2460617.5858655185, 2460617.586201063], [2460617.5868721516, 2460617.5869839997], [2460617.587207696, 2460617.587319544], [2460617.5875432403, 2460617.5876550884], [2460617.5878787846, 2460617.5879906327], [2460617.5885498733, 2460617.5886617214], [2460617.589109114, 2460617.589220962], [2460617.5894446583, 2460617.5895565064], [2460617.5896683545, 2460617.5897802026], [2460617.590003899, 2460617.590115747], [2460617.590227595, 2460617.590339443], [2460617.5904512913, 2460617.5905631394], [2460617.590674987, 2460617.590786835], [2460617.5911223795, 2460617.5913460758], [2460617.591457924, 2460617.591569772], [2460617.5919053163, 2460617.5920171645], [2460617.5921290126, 2460617.5922408607], [2460617.592352709, 2460617.592464557], [2460617.592688253, 2460617.5928001013], [2460617.5929119494, 2460617.5930237975], [2460617.5932474937, 2460617.593359342], [2460617.59347119, 2460617.593583038], [2460617.593694886, 2460617.5938067343], [2460617.5941422787, 2460617.594365975], [2460617.594589671, 2460617.5948133674], [2460617.5950370636, 2460617.595372608], [2460617.595484456, 2460617.5957081523], [2460617.5958200004, 2460617.5959318485], [2460617.5961555447, 2460617.596267393], [2460617.5963792405, 2460617.5964910886], [2460617.596826633, 2460617.597050329], [2460617.5971621773, 2460617.5972740254], [2460617.59760957, 2460617.597721418], [2460617.597945114, 2460617.5983925066], [2460617.5985043547, 2460617.598616203], [2460617.598839899, 2460617.5990635953], [2460617.5991754434, 2460617.5992872915], [2460617.5995109878, 2460617.599734684], [2460617.59995838, 2460617.6000702283], [2460617.6001820765, 2460617.6002939246], [2460617.600741317, 2460617.6009650133], [2460617.6010768614, 2460617.6011887095], [2460617.6014124057, 2460617.601524254], [2460617.601636102, 2460617.60174795], [2460617.601971646, 2460617.602083494], [2460617.602195342, 2460617.60230719], [2460617.6025308864, 2460617.6026427345], [2460617.6027545827, 2460617.602978279], [2460617.603201975, 2460617.6034256713], [2460617.6037612157, 2460617.60409676], [2460617.604208608, 2460617.6043204563], [2460617.6045441525, 2460617.6047678487], [2460617.604991545, 2460617.6053270893], [2460617.6055507855, 2460617.606110026], [2460617.6062218742, 2460617.6063337224], [2460617.6065574186, 2460617.6066692667], [2460617.606781115, 2460617.606892963], [2460617.607004811, 2460617.607116659], [2460617.6072285073, 2460617.6074522035], [2460617.6076758993, 2460617.6078995955], [2460617.6080114436, 2460617.6081232917], [2460617.60823514, 2460617.608346988], [2460617.608570684, 2460617.6089062286], [2460617.609129925, 2460617.609465469], [2460617.6095773173, 2460617.6096891654], [2460617.6099128616, 2460617.6100247097], [2460617.610248406, 2460617.610472102], [2460617.6106957984, 2460617.611255039], [2460617.611366887, 2460617.611478735], [2460617.6115905833, 2460617.6117024315], [2460617.6119261277, 2460617.612037976], [2460617.612149824, 2460617.612261672], [2460617.61237352, 2460617.6129327607], [2460617.6132683046, 2460617.6133801527], [2460617.613715697, 2460617.613827545], [2460617.6139393933, 2460617.6140512414], [2460617.6142749377, 2460617.614610482], [2460617.61472233, 2460617.6148341782], [2460617.6150578745, 2460617.6151697226], [2460617.615393419, 2460617.615505267], [2460617.6158408113, 2460617.6159526594], [2460617.6160645075, 2460617.6161763556], [2460617.6162882037, 2460617.616400052], [2460617.616623748, 2460617.616735596], [2460617.6168474443, 2460617.6169592924], [2460617.617294837, 2460617.617518533], [2460617.6177422293, 2460617.6178540774], [2460617.6180777736, 2460617.6181896217], [2460617.61830147, 2460617.618413318], [2460617.618637014, 2460617.6188607104], [2460617.618972558, 2460617.6191962543], [2460617.619867343, 2460617.619979191], [2460617.620091039, 2460617.6202028873], [2460617.6203147355, 2460617.6204265836], [2460617.620762128, 2460617.620873976], [2460617.620985824, 2460617.6210976723], [2460617.6213213685, 2460617.6214332166], [2460617.621768761, 2460617.6221043053], [2460617.6224398497, 2460617.622551698], [2460617.622663546, 2460617.622775394], [2460617.6231109384, 2460617.6232227865], [2460617.6233346346, 2460617.623558331], [2460617.623893875, 2460617.6241175714], [2460617.6242294195, 2460617.6243412676], [2460617.6244531153, 2460617.6245649634], [2460617.6247886596, 2460617.6249005077], [2460617.625012356, 2460617.625124204], [2460617.625236052, 2460617.6254597483], [2460617.6255715964, 2460617.6256834446], [2460617.6257952927, 2460617.625907141], [2460617.626018989, 2460617.626242685], [2460617.6268019257, 2460617.626913774], [2460617.6274730144, 2460617.6276967106], [2460617.6278085588, 2460617.627920407], [2460617.628255951, 2460617.6285914956], [2460617.6287033437, 2460617.628815192], [2460617.629038888, 2460617.629150736], [2460617.6293744324, 2460617.6295981286], [2460617.629821825, 2460617.629933673], [2460617.630492913, 2460617.630604761], [2460617.6310521537, 2460617.63127585], [2460617.631387698, 2460617.631499546], [2460617.632282483, 2460617.632394331], [2460617.6326180273, 2460617.6327298754], [2460617.6329535716, 2460617.6330654197], [2460617.633512812, 2460617.6337365084], [2460617.6338483565, 2460617.6339602047], [2460617.634072053, 2460617.634183901], [2460617.6346312934, 2460617.6347431415], [2460617.635302382, 2460617.6357497745], [2460617.6360853184, 2460617.6363090146], [2460617.636868255, 2460617.6369801033], [2460617.6372037996, 2460617.6373156477], [2460617.6379867364, 2460617.6380985845], [2460617.6383222807, 2460617.638434129], [2460617.638769673, 2460617.6388815213], [2460617.6398881543, 2460617.6401118506], [2460617.640447395, 2460617.640559243], [2460617.640671091, 2460617.6407829393], [2460617.6415658756, 2460617.6416777237], [2460617.642125116, 2460617.6422369643], [2460617.6424606605, 2460617.642684357], [2460617.6433554455, 2460617.6434672936], [2460617.6442502304, 2460617.6443620785], [2460617.645033167, 2460617.6452568634], [2460617.645927952, 2460617.6461516484], [2460617.646822737, 2460617.646934585], [2460617.647270129, 2460617.647381977], [2460617.6476056734, 2460617.6477175215], [2460617.64838861, 2460617.6485004583], [2460617.6488360027, 2460617.648947851], [2460617.6498426357, 2460617.65017818], [2460617.6507374207, 2460617.650849269], [2460617.6515203575, 2460617.6516322056], [2460617.6525269905, 2460617.665725067]] freq_flags: [[47714233.3984375, 47958374.0234375], [49911499.0234375, 50033569.3359375], [54061889.6484375, 54672241.2109375], [62240600.5859375, 62973022.4609375], [63095092.7734375, 63217163.0859375], [66268920.8984375, 66390991.2109375], [66513061.5234375, 66635131.8359375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108016967.7734375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112411499.0234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [123153686.5234375, 123275756.8359375], [124496459.9609375, 125473022.4609375], [125839233.3984375, 125961303.7109375], [127059936.5234375, 127426147.4609375], [127548217.7734375, 127670288.0859375], [127792358.3984375, 128890991.2109375], [129257202.1484375, 129501342.7734375], [129745483.3984375, 130233764.6484375], [130355834.9609375, 138290405.2734375], [138534545.8984375, 139511108.3984375], [139633178.7109375, 140487670.8984375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143051147.4609375, 143295288.0859375], [143783569.3359375, 144027709.9609375], [144882202.1484375, 145004272.4609375], [145492553.7109375, 145614624.0234375], [145858764.6484375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [148422241.2109375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [155258178.7109375, 155380249.0234375], [155990600.5859375, 156112670.8984375], [159164428.7109375, 159286499.0234375], [169906616.2109375, 170150756.8359375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [190292358.3984375, 190414428.7109375], [191146850.5859375, 191513061.5234375], [193222045.8984375, 193344116.2109375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198348999.0234375], [199203491.2109375, 199325561.5234375], [200790405.2734375, 200912475.5859375], [201766967.7734375, 201889038.0859375], [203964233.3984375, 204086303.7109375], [204940795.8984375, 205062866.2109375], [207504272.4609375, 207626342.7734375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [211166381.8359375, 211288452.1484375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220565795.8984375, 220809936.5234375], [223007202.1484375, 223495483.3984375], [227401733.3984375, 227523803.7109375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[7, Jee], [8, Jee], [9, Jee], [10, Jee], [15, Jnn], [16, Jee], [17, Jnn], [18, Jee], [18, Jnn], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [37, Jee], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [55, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [72, Jnn], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [80, Jee], [80, Jnn], [82, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [90, Jnn], [92, Jee], [92, Jnn], [93, Jee], [93, Jnn], [94, Jee], [94, Jnn], [95, Jee], [97, Jnn], [98, Jee], [98, Jnn], [100, Jnn], [103, Jnn], [104, Jee], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [120, Jee], [121, Jee], [124, Jee], [130, Jee], [130, Jnn], [134, Jee], [136, Jee], [136, Jnn], [137, Jee], [140, Jee], [140, Jnn], [141, Jee], [141, Jnn], [142, Jee], [142, Jnn], [161, Jnn], [164, Jee], [169, Jee], [169, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [183, Jee], [184, Jee], [188, Jnn], [189, Jee], [189, Jnn], [193, Jee], [198, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [206, Jee], [208, Jee], [209, Jee], [209, Jnn], [210, Jee], [210, Jnn], [212, Jnn], [213, Jee], [213, Jnn], [215, Jee], [215, Jnn], [216, Jee], [218, Jnn], [221, Jee], [232, Jee], [234, Jee], [234, Jnn], [235, Jee], [235, Jnn], [239, Jee], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [281, Jee], [281, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 88.43 minutes.