Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated October 13, 2024
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from hera_filters import dspec
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 4))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 2))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
AVG_SPECTRUM_FILTER_DELAY = float(os.environ.get("AVG_SPECTRUM_FILTER_DELAY", 250)) # in ns
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
TIME_AVG_DELAY_FILT_SNR_THRESH = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_THRESH", 4.0))
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE", 1.5))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC', 'AVG_SPECTRUM_FILTER_DELAY',
'EIGENVAL_CUTOFF', 'TIME_AVG_DELAY_FILT_SNR_THRESH', 'TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 4.0 WS_Z_THRESH = 2.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1 AVG_SPECTRUM_FILTER_DELAY = 250.0 EIGENVAL_CUTOFF = 1e-12 TIME_AVG_DELAY_FILT_SNR_THRESH = 4.0 TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = 1.5
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1825 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460628/zen.2460628.25274.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1825 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460628/zen.2460628.25274.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None, vmin=-5, vmax=5):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=vmin, vmax=vmax, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = avg_func(np.where(flags, np.nan, zscore), axis=0)
ztseries = avg_func(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
def time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Produces SNRs after time-averaging z-scores and delay filtering, accounting for flagging's effect on the filter."""
# figure out high and low band based on FM gap at 100 MHz
flagged_stretches = true_stretches(np.all(flags, axis=0))
FM_gap = [fs for fs in flagged_stretches if fs.start <= np.argmin(np.abs(freqs - 100e6)) < fs.stop][0]
low_band = slice((0 if flagged_stretches[0].start != 0 else flagged_stretches[0].stop), FM_gap.start)
high_band = slice(FM_gap.stop, (len(freqs) if flagged_stretches[-1].stop != len(freqs) else flagged_stretches[-1].start))
filt_SNR = {}
for pol in zscore:
# calculate timeavg_SNR and filter
noise_prediction = 1.0 / np.sum(~flags, axis=0)**.5
timeavg_SNR = np.nanmean(np.where(flags, np.nan, zscore[pol] / noise_prediction), axis=0)
wgts = np.where(np.isfinite(timeavg_SNR), 1, 0)
model = np.zeros_like(timeavg_SNR)
for band in [low_band, high_band]:
model[band], _, _ = dspec.fourier_filter(freqs[band], np.where(np.isfinite(timeavg_SNR[band]), timeavg_SNR[band], 0),
wgts[band], [0], [AVG_SPECTRUM_FILTER_DELAY / 1e9], mode="dpss_solve",
eigenval_cutoff=[EIGENVAL_CUTOFF], suppression_factors=[EIGENVAL_CUTOFF])
filt_SNR[pol] = timeavg_SNR - model
# correct for impact of filter
correction_factors = np.ones_like(wgts) * np.nan
for band in [low_band, high_band]:
X = dspec.dpss_operator(freqs[band], [0], filter_half_widths=[AVG_SPECTRUM_FILTER_DELAY / 1e9], eigenval_cutoff=[EIGENVAL_CUTOFF])[0]
W = wgts[band]
leverage = np.diag(X @ np.linalg.pinv(np.dot(X.T * W, X)) @ (X.T * W))
correction_factors[band] = np.where(leverage > 0, (1 - leverage)**.5, np.nan) # because the underlying data should be gaussian
filt_SNR[pol] /= correction_factors
return filt_SNR
def iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Flag whole channels based on their outlierness after delay-filterd time-averaged zscores.
This is done iteratively since the delay filter can be unduly influenced by large outliers."""
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
while True:
largest_SNR = np.nanmax(list(filt_SNR.values()))
if largest_SNR < thresh:
break
#
cut = np.max([thresh, largest_SNR / dynamic_range])
for pol in filt_SNR:
flags[:, filt_SNR[pol] > cut] = True
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag whole integrations or channels using outliers in median
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmedian, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with median z > {AVG_Z_THRESH}.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
# flag whole integrations or channels using outliers in mean
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
# flag channels based on delay filter
iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
print(f'{np.mean(flags):.3%} of flagging channels that are {TIME_AVG_DELAY_FILT_SNR_THRESH}σ outliers after delay filtering the time average.')
# watershed flagging again
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after another round of watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
33.041% of waterfall flagged to start.
All-NaN slice encountered
Flagging an additional 26 integrations and 9 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 4 times previously flagged 10.00% or more.
Flagging an additional 11 integrations and 4 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 34.558% of waterfall flagged after flagging whole times and channels with median z > 1.0. 35.556% of waterfall flagged after flagging z > 4.0 outliers.
37.404% of waterfall flagged after watershed flagging on z > 2.0 neighbors of prior flags. Flagging an additional 0 integrations and 0 channels. Flagging 41 channels previously flagged 25.00% or more.
Mean of empty slice Mean of empty slice
Flagging 305 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels.
Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 44.351% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Mean of empty slice Casting complex values to real discards the imaginary part Casting complex values to real discards the imaginary part
47.867% of flagging channels that are 4.0σ outliers after delay filtering the time average.
48.413% of waterfall flagged after another round of watershed flagging on z > 2.0 neighbors of prior flags.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra(ylim=[-3, 3], flags=flags):
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(ylim)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging(flags=flags):
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1825 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460628/zen.2460628.25274.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460628/2460628_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460628.252627244, 2460628.2529627886], [2460628.253522029, 2460628.25464051], [2460628.254752358, 2460628.2550879023], [2460628.2551997504, 2460628.2554234467], [2460628.256541928, 2460628.256877472], [2460628.2569893203, 2460628.2574367127], [2460628.260121067, 2460628.260232915], [2460628.2616869407, 2460628.262022485], [2460628.2625817256, 2460628.2626935737], [2460628.2635883586, 2460628.2642594473], [2460628.2643712955, 2460628.2644831436], [2460628.266272713, 2460628.266496409], [2460628.267279346, 2460628.2675030422], [2460628.2685096753, 2460628.2687333715], [2460628.2689570677, 2460628.269068916], [2460628.271529574, 2460628.2722006626], [2460628.2747731693, 2460628.2748850174], [2460628.275556106, 2460628.2758916505], [2460628.276339043, 2460628.2765627387], [2460628.2775693717, 2460628.27768122], [2460628.2783523086, 2460628.278687853], [2460628.280924815, 2460628.2810366633], [2460628.2812603596, 2460628.2813722077], [2460628.2819314483, 2460628.282266992], [2460628.282938081, 2460628.2833854733], [2460628.284056562, 2460628.2843921063], [2460628.2847276507, 2460628.2852868913], [2460628.286740917, 2460628.287076461], [2460628.2876357017, 2460628.2880830937], [2460628.2887541824, 2460628.2890897267], [2460628.289201575, 2460628.289537119], [2460628.293004411, 2460628.293675499], [2460628.2940110434, 2460628.2941228915], [2460628.294570284, 2460628.294682132], [2460628.2959124614, 2460628.296359854], [2460628.2970309425, 2460628.2972546387], [2460628.299938993, 2460628.300050841], [2460628.301057474, 2460628.3011693223], [2460628.3023996516, 2460628.3025114997], [2460628.3043010696, 2460628.305084006], [2460628.312465981, 2460628.3128015255], [2460628.313360766, 2460628.3135844623], [2460628.3140318547, 2460628.314143703], [2460628.3147029434, 2460628.315150336], [2460628.3155977284, 2460628.3157095765], [2460628.3169399053, 2460628.3171636015], [2460628.3199598044, 2460628.3202953488], [2460628.320407197, 2460628.320519045], [2460628.320630893, 2460628.3210782856], [2460628.322756007, 2460628.322867855], [2460628.323091551, 2460628.3242100324], [2460628.3243218805, 2460628.3244337286], [2460628.3251048173, 2460628.3254403616], [2460628.3261114503, 2460628.3262232984], [2460628.327118083, 2460628.327229931], [2460628.3295787415, 2460628.3296905896], [2460628.329914286, 2460628.330026134], [2460628.3305853745, 2460628.3308090707], [2460628.331032767, 2460628.3313683113], [2460628.3347237543, 2460628.3348356024], [2460628.335171147, 2460628.335282995], [2460628.3368488685, 2460628.3370725648], [2460628.337519957, 2460628.3378555016], [2460628.3399806153, 2460628.3400924634], [2460628.3402043115, 2460628.3403161597], [2460628.340651704, 2460628.3408754], [2460628.3410990965, 2460628.3413227927], [2460628.3422175776, 2460628.342441274], [2460628.3430005144, 2460628.3432242107], [2460628.3462441093, 2460628.3464678056], [2460628.348816616, 2460628.349040312], [2460628.3516128184, 2460628.351948363], [2460628.3523957552, 2460628.3526194515], [2460628.354968262, 2460628.355527502], [2460628.35563935, 2460628.3558630464], [2460628.3559748945, 2460628.3561985907], [2460628.3591066417, 2460628.35921849], [2460628.359554034, 2460628.3597777304], [2460628.3598895785, 2460628.360113275], [2460628.360225123, 2460628.360448819], [2460628.3606725154, 2460628.3607843635], [2460628.3633568697, 2460628.363468718], [2460628.3639161102, 2460628.364587199], [2460628.364699047, 2460628.3651464395], [2460628.36805449, 2460628.368166338], [2460628.369732212, 2460628.369955908], [2460628.3714099335, 2460628.3715217817], [2460628.373087655, 2460628.373311351], [2460628.376219402, 2460628.3764430983], [2460628.3781208196, 2460628.3782326677], [2460628.378344516, 2460628.378568212], [2460628.3816999593, 2460628.3819236555], [2460628.3827065923, 2460628.3828184404], [2460628.383825073, 2460628.3842724655], [2460628.3850554023, 2460628.3852790985], [2460628.3874042127, 2460628.387516061], [2460628.394003251, 2460628.3942269473], [2460628.3957928205, 2460628.3960165167], [2460628.4009378334, 2460628.4011615296], [2460628.4020563145, 2460628.402391859], [2460628.40585915, 2460628.4064183906], [2460628.409550138, 2460628.409661986], [2460628.409773834, 2460628.4103330746], [2460628.4104449227, 2460628.410556771], [2460628.410780467, 2460628.4110041633], [2460628.4133529733, 2460628.4135766695], [2460628.41413591, 2460628.414247758], [2460628.4145833026, 2460628.414918847], [2460628.417155809, 2460628.417379505], [2460628.4178268975, 2460628.41827429], [2460628.419504619, 2460628.4196164673], [2460628.4197283154, 2460628.420399404], [2460628.4206231004, 2460628.421182341], [2460628.4215178853, 2460628.4233074547], [2460628.423419303, 2460628.423754847], [2460628.4271102906, 2460628.427445835], [2460628.4284524675, 2460628.4285643157], [2460628.429682797, 2460628.429794645], [2460628.4330382403, 2460628.4340448733], [2460628.434268569, 2460628.4347159616], [2460628.4353870503, 2460628.4357225946], [2460628.435946291, 2460628.436281835], [2460628.4374003164, 2460628.437959557], [2460628.4385187975, 2460628.4387424937], [2460628.439189886, 2460628.4395254306], [2460628.4420979368, 2460628.442209785], [2460628.4436638104, 2460628.4438875066], [2460628.4439993547, 2460628.444111203], [2460628.4472429496, 2460628.447578494], [2460628.44780219, 2460628.4479140383], [2460628.448361431, 2460628.448696975], [2460628.4490325195, 2460628.449479912], [2460628.4502628488, 2460628.450710241], [2460628.451828722, 2460628.4521642663], [2460628.4523879625, 2460628.452723507], [2460628.453059051, 2460628.4533945955], [2460628.4545130767, 2460628.454624925], [2460628.456526343, 2460628.4568618867], [2460628.4585396084, 2460628.4586514565], [2460628.4595462414, 2460628.459993634], [2460628.4617832038, 2460628.4620069], [2460628.4655860392, 2460628.4656978874], [2460628.466257128, 2460628.4665926723], [2460628.4702836596, 2460628.470507356], [2460628.471737685, 2460628.4718495333], [2460628.4719613814, 2460628.473862799], [2460628.4753168244, 2460628.4755405206], [2460628.476099761, 2460628.4763234574], [2460628.478895964, 2460628.479007812], [2460628.4806855335, 2460628.4809092297], [2460628.4814684703, 2460628.4815803184], [2460628.483034344, 2460628.4833698883], [2460628.4838172807, 2460628.484152825], [2460628.485383154, 2460628.48560685], [2460628.487284572, 2460628.487508268], [2460628.488179357, 2460628.488291205], [2460628.4886267493, 2460628.4890741417], [2460628.489409686, 2460628.4897452304], [2460628.4899689266, 2460628.490192623], [2460628.492765129, 2460628.4931006734], [2460628.4950020914, 2460628.4953376357], [2460628.496120572, 2460628.49623242], [2460628.505292117, 2460628.506075054], [2460628.508312016, 2460628.508423864], [2460628.509318649, 2460628.509430497], [2460628.512897788, 2460628.5133451805], [2460628.513568877, 2460628.513680725], [2460628.517819105, 2460628.5179309533], [2460628.5216219407, 2460628.525424776], [2460628.5257603205, 2460628.526207713], [2460628.52933946, 2460628.5296750045], [2460628.5309053333, 2460628.5310171815], [2460628.532471207, 2460628.532583055], [2460628.5331422957, 2460628.533254144], [2460628.538846549, 2460628.5391820935], [2460628.540636119, 2460628.540747967], [2460628.5462285243, 2460628.5464522205], [2460628.5477943975, 2460628.5479062456], [2460628.548129942, 2460628.5488010305], [2460628.55003136, 2460628.550143208], [2460628.555511917, 2460628.555623765], [2460628.55651855, 2460628.5567422463], [2460628.557525183, 2460628.557637031], [2460628.559091056, 2460628.5592029043], [2460628.5619991072, 2460628.5622228035], [2460628.564124221, 2460628.564347917], [2460628.5647953097, 2460628.564907158], [2460628.566249335, 2460628.5664730314], [2460628.567927057, 2460628.568150753], [2460628.569381082, 2460628.5698284744], [2460628.572400981, 2460628.5728483736], [2460628.573183918, 2460628.5738550066], [2460628.5750853354, 2460628.5754208798], [2460628.5778815383, 2460628.578328931], [2460628.583921336, 2460628.5841450323], [2460628.586381994, 2460628.5864938423], [2460628.588059716, 2460628.588283412], [2460628.5928691844, 2460628.5930928807], [2460628.5946587543, 2460628.5949942986], [2460628.5951061468, 2460628.595217995], [2460628.5980141973, 2460628.5981260454], [2460628.598573438, 2460628.5989089822], [2460628.6009222483, 2460628.6011459446], [2460628.601593337, 2460628.6018170333], [2460628.603830299, 2460628.603942147], [2460628.612107059, 2460628.612218907], [2460628.612330755, 2460628.6124426033], [2460628.614120325, 2460628.614232173], [2460628.6160217426, 2460628.6161335907], [2460628.6166928313, 2460628.6169165275], [2460628.617475768, 2460628.617587616], [2460628.6189297936, 2460628.619265338], [2460628.620831211, 2460628.6212786036], [2460628.6234037178, 2460628.623739262], [2460628.624745895, 2460628.6248577433], [2460628.6249695914, 2460628.6250814395], [2460628.6255288315, 2460628.626088072], [2460628.6263117683, 2460628.6284368825], [2460628.6285487306, 2460628.6295553637], [2460628.62977906, 2460628.629890908], [2460628.6304501486, 2460628.6305619967], [2460628.632463414, 2460628.635035921], [2460628.635147769, 2460628.6355951615], [2460628.636154402, 2460628.63626625], [2460628.636713642, 2460628.64040463], [2460628.6423060475, 2460628.64275344], [2460628.6433126805, 2460628.6434245287], [2460628.644878554, 2460628.6449904023], [2460628.6453259466, 2460628.663333492]] freq_flags: [[49911499.0234375, 50155639.6484375], [62240600.5859375, 62973022.4609375], [66268920.8984375, 66390991.2109375], [66513061.5234375, 66635131.8359375], [69564819.3359375, 69686889.6484375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108139038.0859375], [109237670.8984375, 109359741.2109375], [109603881.8359375, 109725952.1484375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112411499.0234375], [112533569.3359375, 113510131.8359375], [113632202.1484375, 113754272.4609375], [115707397.4609375, 116561889.6484375], [119979858.3984375, 120101928.7109375], [124618530.2734375, 125595092.7734375], [127304077.1484375, 127426147.4609375], [127548217.7734375, 127670288.0859375], [129989624.0234375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136581420.8984375, 138290405.2734375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [142684936.5234375, 143295288.0859375], [143783569.3359375, 144027709.9609375], [144638061.5234375, 144760131.8359375], [144882202.1484375, 145248413.0859375], [145492553.7109375, 145614624.0234375], [145736694.3359375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [148422241.2109375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [155258178.7109375, 155380249.0234375], [155868530.2734375, 156112670.8984375], [157333374.0234375, 157455444.3359375], [157577514.6484375, 157699584.9609375], [157821655.2734375, 158065795.8984375], [158187866.2109375, 158309936.5234375], [158432006.8359375, 158554077.1484375], [159164428.7109375, 159286499.0234375], [161361694.3359375, 161483764.6484375], [169906616.2109375, 170150756.8359375], [170516967.7734375, 170639038.0859375], [170883178.7109375, 171005249.0234375], [175033569.3359375, 175521850.5859375], [175765991.2109375, 175888061.5234375], [176010131.8359375, 187118530.2734375], [187240600.5859375, 187850952.1484375], [187973022.4609375, 188217163.0859375], [189926147.4609375, 190048217.7734375], [190292358.3984375, 190414428.7109375], [190536499.0234375, 190658569.3359375], [191146850.5859375, 191513061.5234375], [191757202.1484375, 191879272.4609375], [192123413.0859375, 192245483.3984375], [193222045.8984375, 193344116.2109375], [194564819.3359375, 194686889.6484375], [194931030.2734375, 195053100.5859375], [195663452.1484375, 195785522.4609375], [196395874.0234375, 196640014.6484375], [196884155.2734375, 197006225.5859375], [197128295.8984375, 197372436.5234375], [197738647.4609375, 198715209.9609375], [199203491.2109375, 199325561.5234375], [200057983.3984375, 200180053.7109375], [200424194.3359375, 201156616.2109375], [201644897.4609375, 201889038.0859375], [202011108.3984375, 202133178.7109375], [203231811.5234375, 203353881.8359375], [203964233.3984375, 204086303.7109375], [204818725.5859375, 205429077.1484375], [206893920.8984375, 207015991.2109375], [207138061.5234375, 207626342.7734375], [207748413.0859375, 207992553.7109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [210433959.9609375, 210556030.2734375], [211166381.8359375, 211288452.1484375], [212142944.3359375, 212265014.6484375], [213119506.8359375, 213241577.1484375], [215194702.1484375, 215438842.7734375], [218978881.8359375, 219100952.1484375], [219589233.3984375, 219711303.7109375], [220565795.8984375, 220809936.5234375], [221176147.4609375, 221298217.7734375], [222274780.2734375, 222396850.5859375], [222640991.2109375, 223739624.0234375], [224105834.9609375, 224227905.2734375], [225692749.0234375, 225814819.3359375], [226425170.8984375, 226547241.2109375], [227401733.3984375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231307983.3984375], [234115600.5859375, 234359741.2109375]] ex_ants: [[4, Jee], [5, Jee], [7, Jee], [8, Jee], [9, Jee], [10, Jee], [15, Jee], [15, Jnn], [16, Jee], [17, Jnn], [18, Jee], [18, Jnn], [20, Jee], [21, Jee], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [36, Jee], [36, Jnn], [37, Jnn], [40, Jnn], [42, Jnn], [45, Jee], [46, Jee], [46, Jnn], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jnn], [55, Jee], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [69, Jee], [73, Jee], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jnn], [84, Jee], [85, Jnn], [86, Jee], [86, Jnn], [87, Jee], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [97, Jnn], [98, Jnn], [99, Jnn], [100, Jnn], [103, Jnn], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [117, Jee], [119, Jee], [119, Jnn], [120, Jee], [120, Jnn], [121, Jee], [125, Jee], [127, Jee], [130, Jee], [134, Jee], [136, Jee], [136, Jnn], [137, Jee], [137, Jnn], [142, Jnn], [148, Jee], [161, Jnn], [164, Jee], [170, Jee], [171, Jnn], [175, Jnn], [176, Jee], [176, Jnn], [177, Jee], [177, Jnn], [178, Jee], [178, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [182, Jnn], [183, Jee], [184, Jee], [188, Jnn], [193, Jee], [197, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [206, Jee], [208, Jee], [209, Jnn], [210, Jee], [210, Jnn], [212, Jnn], [213, Jee], [213, Jnn], [215, Jnn], [218, Jnn], [231, Jee], [232, Jee], [234, Jnn], [235, Jnn], [239, Jee], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [253, Jnn], [255, Jnn], [256, Jee], [256, Jnn], [262, Jee], [262, Jnn], [268, Jnn], [270, Jee], [270, Jnn], [272, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 44.72 minutes.