Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated October 13, 2024
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from hera_filters import dspec
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 4))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 2))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
AVG_SPECTRUM_FILTER_DELAY = float(os.environ.get("AVG_SPECTRUM_FILTER_DELAY", 250)) # in ns
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
TIME_AVG_DELAY_FILT_SNR_THRESH = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_THRESH", 4.0))
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE", 1.5))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC', 'AVG_SPECTRUM_FILTER_DELAY',
'EIGENVAL_CUTOFF', 'TIME_AVG_DELAY_FILT_SNR_THRESH', 'TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 4.0 WS_Z_THRESH = 2.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1 AVG_SPECTRUM_FILTER_DELAY = 250.0 EIGENVAL_CUTOFF = 1e-12 TIME_AVG_DELAY_FILT_SNR_THRESH = 4.0 TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = 1.5
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1849 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460700/zen.2460700.25233.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1849 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460700/zen.2460700.25233.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None, vmin=-5, vmax=5):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=vmin, vmax=vmax, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = avg_func(np.where(flags, np.nan, zscore), axis=0)
ztseries = avg_func(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
def time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Produces SNRs after time-averaging z-scores and delay filtering, accounting for flagging's effect on the filter."""
# figure out high and low band based on FM gap at 100 MHz
flagged_stretches = true_stretches(np.all(flags, axis=0))
FM_gap = [fs for fs in flagged_stretches if fs.start <= np.argmin(np.abs(freqs - 100e6)) < fs.stop][0]
low_band = slice((0 if flagged_stretches[0].start != 0 else flagged_stretches[0].stop), FM_gap.start)
high_band = slice(FM_gap.stop, (len(freqs) if flagged_stretches[-1].stop != len(freqs) else flagged_stretches[-1].start))
filt_SNR = {}
for pol in zscore:
# calculate timeavg_SNR and filter
noise_prediction = 1.0 / np.sum(~flags, axis=0)**.5
timeavg_SNR = np.nanmean(np.where(flags, np.nan, zscore[pol] / noise_prediction), axis=0)
wgts = np.where(np.isfinite(timeavg_SNR), 1, 0)
model = np.zeros_like(timeavg_SNR)
for band in [low_band, high_band]:
model[band], _, _ = dspec.fourier_filter(freqs[band], np.where(np.isfinite(timeavg_SNR[band]), timeavg_SNR[band], 0),
wgts[band], [0], [AVG_SPECTRUM_FILTER_DELAY / 1e9], mode="dpss_solve",
eigenval_cutoff=[EIGENVAL_CUTOFF], suppression_factors=[EIGENVAL_CUTOFF])
filt_SNR[pol] = timeavg_SNR - model
# correct for impact of filter
correction_factors = np.ones_like(wgts) * np.nan
for band in [low_band, high_band]:
X = dspec.dpss_operator(freqs[band], [0], filter_half_widths=[AVG_SPECTRUM_FILTER_DELAY / 1e9], eigenval_cutoff=[EIGENVAL_CUTOFF])[0]
W = wgts[band]
leverage = np.diag(X @ np.linalg.pinv(np.dot(X.T * W, X)) @ (X.T * W))
correction_factors[band] = np.where(leverage > 0, (1 - leverage)**.5, np.nan) # because the underlying data should be gaussian
filt_SNR[pol] /= correction_factors
return filt_SNR
def iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Flag whole channels based on their outlierness after delay-filterd time-averaged zscores.
This is done iteratively since the delay filter can be unduly influenced by large outliers."""
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
while True:
largest_SNR = np.nanmax(list(filt_SNR.values()))
if largest_SNR < thresh:
break
#
cut = np.max([thresh, largest_SNR / dynamic_range])
for pol in filt_SNR:
flags[:, filt_SNR[pol] > cut] = True
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag whole integrations or channels using outliers in median
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmedian, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with median z > {AVG_Z_THRESH}.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
# flag whole integrations or channels using outliers in mean
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
# flag channels based on delay filter
iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
print(f'{np.mean(flags):.3%} of flagging channels that are {TIME_AVG_DELAY_FILT_SNR_THRESH}σ outliers after delay filtering the time average.')
# watershed flagging again
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after another round of watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
25.904% of waterfall flagged to start.
All-NaN slice encountered
Flagging an additional 0 integrations and 7 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 3 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 4 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 26.554% of waterfall flagged after flagging whole times and channels with median z > 1.0. 28.144% of waterfall flagged after flagging z > 4.0 outliers.
31.437% of waterfall flagged after watershed flagging on z > 2.0 neighbors of prior flags.
Mean of empty slice
Mean of empty slice
Flagging an additional 0 integrations and 0 channels. Flagging 46 channels previously flagged 25.00% or more. Flagging 691 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 2 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 45.840% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Mean of empty slice Casting complex values to real discards the imaginary part Casting complex values to real discards the imaginary part
50.072% of flagging channels that are 4.0σ outliers after delay filtering the time average.
50.802% of waterfall flagged after another round of watershed flagging on z > 2.0 neighbors of prior flags.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra(ylim=[-3, 3], flags=flags):
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(ylim)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice
Mean of empty slice
def summarize_flagging(flags=flags):
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1849 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460700/zen.2460700.25233.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460700/2460700_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460700.252330536, 2460700.2525542323], [2460700.2526660804, 2460700.2530016247], [2460700.253449017, 2460700.2541201054], [2460700.2542319535, 2460700.2543438016], [2460700.2551267385, 2460700.2561333715], [2460700.2596006626, 2460700.260048055], [2460700.2615020806, 2460700.2616139287], [2460700.263627195, 2460700.263962739], [2460700.268101119, 2460700.2684366633], [2460700.275259398, 2460700.275483094], [2460700.2755949423, 2460700.276266031], [2460700.276937119, 2460700.2771608154], [2460700.2783911447, 2460700.278838537], [2460700.279509626, 2460700.27984517], [2460700.280739955, 2460700.2810754995], [2460700.28163474, 2460700.28219398], [2460700.2824176764, 2460700.2825295245], [2460700.2843190944, 2460700.2845427906], [2460700.2852138793, 2460700.2854375755], [2460700.286779753, 2460700.2871152973], [2460700.2886811704, 2460700.2889048667], [2460700.2905825884, 2460700.2906944365], [2460700.2909181328, 2460700.291253677], [2460700.2915892215, 2460700.291924766], [2460700.294273576, 2460700.294385424], [2460700.2949446645, 2460700.2959512975], [2460700.30053707, 2460700.3009844623], [2460700.301655551, 2460700.3021029434], [2460700.3042280576, 2460700.3046754496], [2460700.3053465383, 2460700.3054583864], [2460700.306800564, 2460700.307136108], [2460700.308925678, 2460700.3092612224], [2460700.3101560073, 2460700.3106033993], [2460700.3107152474, 2460700.3108270955], [2460700.31116264, 2460700.311274488], [2460700.312169273, 2460700.3126166654], [2460700.3161958046, 2460700.3172024377], [2460700.317426134, 2460700.3177616782], [2460700.3189920075, 2460700.3192157038], [2460700.319551248, 2460700.3211171217], [2460700.3234659317, 2460700.323801476], [2460700.3240251723, 2460700.3241370204], [2460700.3260384384, 2460700.3261502865], [2460700.3262621346, 2460700.3269332233], [2460700.3282754, 2460700.3284990964], [2460700.3286109446, 2460700.3287227927], [2460700.329953122, 2460700.3312952993], [2460700.333196717, 2460700.334091502], [2460700.335321831, 2460700.3356573754], [2460700.3357692235, 2460700.336216616], [2460700.3368877047, 2460700.336999553], [2460700.3401312996, 2460700.340578692], [2460700.3409142364, 2460700.341361629], [2460700.341697173, 2460700.3420327175], [2460700.3421445657, 2460700.3428156544], [2460700.3438222874, 2460700.3453881606], [2460700.3455000087, 2460700.345723705], [2460700.345835553, 2460700.3465066417], [2460700.346730338, 2460700.346954034], [2460700.3471777304, 2460700.347625123], [2460700.347848819, 2460700.3481843635], [2460700.3482962116, 2460700.349638389], [2460700.3498620847, 2460700.350197629], [2460700.3507568697, 2460700.35131611], [2460700.351875351, 2460700.3523227433], [2460700.3526582876, 2460700.35310568], [2460700.353217528, 2460700.353776769], [2460700.354112313, 2460700.3559018825], [2460700.3560137306, 2460700.356349275], [2460700.3566848193, 2460700.358474389], [2460700.3632838577, 2460700.363619402], [2460700.3650734276, 2460700.365408972], [2460700.365632668, 2460700.3659682125], [2460700.366303757, 2460700.366862997], [2460700.3674222375, 2460700.367757782], [2460700.3724554023, 2460700.3726790985], [2460700.374244972, 2460700.3745805165], [2460700.3755871495, 2460700.3756989976], [2460700.3767056307, 2460700.377041175], [2460700.379613681, 2460700.3806203143], [2460700.3807321624, 2460700.3808440105], [2460700.3816269473, 2460700.3817387954], [2460700.382409884, 2460700.383080973], [2460700.383528365, 2460700.383640213], [2460700.3840876054, 2460700.3841994535], [2460700.3956079604, 2460700.3957198085], [2460700.3959435048, 2460700.396055353], [2460700.396167201, 2460700.396279049], [2460700.396390897, 2460700.3967264416], [2460700.397173834, 2460700.397285682], [2460700.3973975303, 2460700.3975093784], [2460700.3997463407, 2460700.399970037], [2460700.400641125, 2460700.4008648214], [2460700.4012003657, 2460700.4019833026], [2460700.402542543, 2460700.4027662394], [2460700.403213632, 2460700.40332548], [2460700.404220265, 2460700.404332113], [2460700.404443961, 2460700.4047795055], [2460700.4055624423, 2460700.4056742904], [2460700.410371911, 2460700.4108193032], [2460700.414062898, 2460700.4143984425], [2460700.414957683, 2460700.4154050755], [2460700.41574062, 2460700.4161880123], [2460700.416635405, 2460700.416970949], [2460700.4170827973, 2460700.4171946454], [2460700.417418341, 2460700.4187605185], [2460700.4188723667, 2460700.419207911], [2460700.4197671516, 2460700.420102696], [2460700.4205500884, 2460700.4223396583], [2460700.4228988984, 2460700.4232344427], [2460700.423458139, 2460700.4239055314], [2460700.4241292276, 2460700.4250240126], [2460700.4251358607, 2460700.425471405], [2460700.427149127, 2460700.4277083674], [2460700.4280439117, 2460700.428379456], [2460700.4284913037, 2460700.429609785], [2460700.429833481, 2460700.429945329], [2460700.4303927217, 2460700.4309519622], [2460700.4339718614, 2460700.4340837095], [2460700.4395642667, 2460700.439676115], [2460700.4405708993, 2460700.4409064436], [2460700.4410182917, 2460700.44113014], [2460700.443367102, 2460700.4434789503], [2460700.4435907984, 2460700.4437026465], [2460700.4438144946, 2460700.4439263428], [2460700.444038191, 2460700.444261887], [2460700.4459396084, 2460700.446610697], [2460700.4469462414, 2460700.4478410264], [2460700.4481765707, 2460700.450525381], [2460700.4506372293, 2460700.4511964694], [2460700.4541045204, 2460700.454887457], [2460700.4560059384, 2460700.456453331], [2460700.4575718115, 2460700.458019204], [2460700.4614864956, 2460700.461933888], [2460700.463276065, 2460700.464394546], [2460700.4649537867, 2460700.465401179], [2460700.4655130273, 2460700.4656248754], [2460700.4678618372, 2460700.4683092297], [2460700.472559458, 2460700.472671306], [2460700.4827376357, 2460700.48307318], [2460700.487099712, 2460700.487435256], [2460700.489112978, 2460700.489448522], [2460700.4895603703, 2460700.4896722184], [2460700.490455155, 2460700.4909025473], [2460700.4921328765, 2460700.492692117], [2460700.4966068007, 2460700.496942345], [2460700.503317687, 2460700.503876928], [2460700.5098048775, 2460700.5100285737], [2460700.510140422, 2460700.5108115105], [2460700.511370751, 2460700.5117062954], [2460700.513719561, 2460700.513831409], [2460700.5162920677, 2460700.516627612], [2460700.517410549, 2460700.517634245], [2460700.523002954, 2460700.5231148023], [2460700.5234503467, 2460700.523785891], [2460700.5268057897, 2460700.527141334], [2460700.530273081, 2460700.530608625], [2460700.5401157145, 2460700.540563107], [2460700.5507412846, 2460700.551076829], [2460700.551188677, 2460700.551300525], [2460700.5551033607, 2460700.555438905], [2460700.556221842, 2460700.556557386], [2460700.557340323, 2460700.5576758673], [2460700.557899563, 2460700.558011411], [2460700.559689133, 2460700.5601365254], [2460700.5609194622, 2460700.5610313104], [2460700.5630445764, 2460700.563491969], [2460700.56516969, 2460700.5656170826], [2460700.5676303487, 2460700.567742197], [2460700.580157337, 2460700.5821706024], [2460700.582729843, 2460700.582841691], [2460700.582953539, 2460700.5831772354], [2460700.583736476, 2460700.5839601723], [2460700.5840720204, 2460700.584519413], [2460700.584631261, 2460700.5854141978], [2460700.5892170332, 2460700.5894407295], [2460700.5938028055, 2460700.59413835], [2460700.596039768, 2460700.596263464], [2460700.6053231605, 2460700.605658705], [2460700.6071127304, 2460700.6074482747], [2460700.612034047, 2460700.612145895], [2460700.6122577433, 2460700.6124814395], [2460700.620422655, 2460700.620758199], [2460700.621652984, 2460700.621764832], [2460700.623330706, 2460700.62366625], [2460700.6238899464, 2460700.6241136426], [2460700.624449187, 2460700.624561035], [2460700.624672883, 2460700.6247847313], [2460700.6250084275, 2460700.6262387563], [2460700.6263506045, 2460700.626909845], [2460700.6272453894, 2460700.6275809337], [2460700.627692782, 2460700.6660566824]] freq_flags: [[49911499.0234375, 50155639.6484375], [59921264.6484375, 60409545.8984375], [62118530.2734375, 63461303.7109375], [66757202.1484375, 67001342.7734375], [69320678.7109375, 69442749.0234375], [69564819.3359375, 69686889.6484375], [69931030.2734375, 70053100.5859375], [87387084.9609375, 108139038.0859375], [109970092.7734375, 110092163.0859375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 112899780.2734375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116073608.3984375, 116195678.7109375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [124618530.2734375, 125350952.1484375], [127548217.7734375, 127792358.3984375], [129989624.0234375, 130111694.3359375], [136215209.9609375, 136459350.5859375], [136825561.5234375, 138412475.5859375], [138656616.2109375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [142440795.8984375, 143417358.3984375], [143783569.3359375, 144027709.9609375], [144882202.1484375, 145004272.4609375], [145858764.6484375, 145980834.9609375], [147445678.7109375, 147567749.0234375], [148422241.2109375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [153671264.6484375, 153793334.9609375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [155258178.7109375, 155380249.0234375], [155868530.2734375, 155990600.5859375], [156967163.0859375, 157089233.3984375], [157577514.6484375, 157699584.9609375], [158432006.8359375, 158554077.1484375], [158676147.4609375, 158798217.7734375], [159164428.7109375, 159286499.0234375], [160140991.2109375, 160385131.8359375], [163681030.2734375, 163803100.5859375], [168807983.3984375, 168930053.7109375], [169174194.3359375, 169296264.6484375], [169906616.2109375, 170761108.3984375], [170883178.7109375, 171005249.0234375], [171249389.6484375, 171981811.5234375], [175033569.3359375, 175399780.2734375], [179672241.2109375, 179794311.5234375], [181137084.9609375, 181381225.5859375], [183212280.2734375, 183334350.5859375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [190292358.3984375, 190414428.7109375], [190658569.3359375, 191513061.5234375], [193222045.8984375, 193344116.2109375], [195297241.2109375, 195419311.5234375], [195663452.1484375, 195785522.4609375], [196029663.0859375, 197006225.5859375], [197128295.8984375, 197372436.5234375], [197494506.8359375, 198959350.5859375], [199203491.2109375, 199325561.5234375], [200790405.2734375, 200912475.5859375], [201644897.4609375, 201889038.0859375], [203964233.3984375, 204086303.7109375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [206039428.7109375, 206283569.3359375], [207138061.5234375, 207260131.8359375], [207504272.4609375, 207626342.7734375], [208480834.9609375, 208724975.5859375], [208847045.8984375, 212020874.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [215682983.3984375, 215805053.7109375], [216171264.6484375, 216293334.9609375], [220565795.8984375, 220809936.5234375], [220932006.8359375, 221054077.1484375], [221176147.4609375, 221298217.7734375], [222763061.5234375, 223861694.3359375], [227401733.3984375, 227767944.3359375], [228012084.9609375, 228134155.2734375], [229110717.7734375, 229354858.3984375], [229598999.0234375, 229721069.3359375], [229965209.9609375, 230087280.2734375], [230941772.4609375, 234359741.2109375]] ex_ants: [[3, Jee], [9, Jee], [15, Jnn], [16, Jee], [17, Jnn], [18, Jnn], [21, Jee], [21, Jnn], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [31, Jnn], [32, Jnn], [33, Jnn], [34, Jee], [34, Jnn], [35, Jee], [35, Jnn], [37, Jnn], [40, Jee], [40, Jnn], [41, Jee], [41, Jnn], [42, Jee], [42, Jnn], [45, Jee], [45, Jnn], [46, Jee], [46, Jnn], [47, Jee], [47, Jnn], [48, Jee], [48, Jnn], [49, Jee], [49, Jnn], [51, Jee], [54, Jee], [54, Jnn], [55, Jee], [55, Jnn], [56, Jee], [56, Jnn], [57, Jee], [57, Jnn], [61, Jee], [61, Jnn], [62, Jee], [62, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [67, Jee], [68, Jee], [68, Jnn], [69, Jee], [69, Jnn], [70, Jee], [70, Jnn], [71, Jee], [71, Jnn], [72, Jee], [72, Jnn], [73, Jee], [73, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [81, Jee], [82, Jee], [82, Jnn], [84, Jee], [86, Jee], [88, Jee], [88, Jnn], [90, Jee], [90, Jnn], [92, Jee], [93, Jee], [93, Jnn], [95, Jee], [97, Jee], [97, Jnn], [98, Jnn], [100, Jnn], [103, Jnn], [104, Jee], [104, Jnn], [107, Jee], [107, Jnn], [108, Jnn], [109, Jnn], [111, Jnn], [112, Jnn], [114, Jee], [114, Jnn], [116, Jee], [116, Jnn], [117, Jee], [120, Jee], [120, Jnn], [121, Jee], [121, Jnn], [124, Jee], [125, Jee], [125, Jnn], [130, Jnn], [133, Jee], [134, Jee], [135, Jee], [137, Jee], [140, Jee], [142, Jnn], [143, Jee], [143, Jnn], [144, Jee], [144, Jnn], [145, Jee], [145, Jnn], [146, Jee], [146, Jnn], [148, Jnn], [149, Jnn], [150, Jnn], [155, Jee], [155, Jnn], [161, Jee], [161, Jnn], [163, Jee], [163, Jnn], [164, Jee], [164, Jnn], [165, Jee], [165, Jnn], [166, Jee], [166, Jnn], [170, Jee], [171, Jnn], [176, Jee], [176, Jnn], [179, Jee], [179, Jnn], [180, Jnn], [182, Jee], [182, Jnn], [184, Jee], [184, Jnn], [185, Jee], [185, Jnn], [186, Jee], [186, Jnn], [187, Jee], [187, Jnn], [188, Jnn], [189, Jee], [189, Jnn], [191, Jnn], [198, Jnn], [199, Jee], [199, Jnn], [200, Jee], [200, Jnn], [201, Jnn], [202, Jnn], [204, Jee], [207, Jnn], [208, Jee], [208, Jnn], [209, Jee], [209, Jnn], [212, Jnn], [213, Jee], [213, Jnn], [215, Jee], [215, Jnn], [216, Jee], [216, Jnn], [217, Jee], [217, Jnn], [218, Jee], [218, Jnn], [226, Jnn], [232, Jee], [234, Jnn], [235, Jee], [235, Jnn], [240, Jee], [240, Jnn], [241, Jee], [241, Jnn], [242, Jee], [242, Jnn], [243, Jee], [243, Jnn], [245, Jnn], [246, Jee], [250, Jee], [251, Jee], [253, Jnn], [255, Jnn], [261, Jnn], [262, Jee], [262, Jnn], [268, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.6.2.dev110+g0529798 hera_qm: 2.2.0 hera_filters: 0.1.6.dev1+g297dcce
hera_notebook_templates: 0.1.dev936+gdc93cad pyuvdata: 3.0.1.dev70+g283dda3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 40.25 minutes.