Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated October 13, 2024
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from hera_filters import dspec
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 4))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 2))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
AVG_SPECTRUM_FILTER_DELAY = float(os.environ.get("AVG_SPECTRUM_FILTER_DELAY", 250)) # in ns
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
TIME_AVG_DELAY_FILT_SNR_THRESH = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_THRESH", 4.0))
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE", 1.5))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC', 'AVG_SPECTRUM_FILTER_DELAY',
'EIGENVAL_CUTOFF', 'TIME_AVG_DELAY_FILT_SNR_THRESH', 'TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 4.0 WS_Z_THRESH = 2.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1 AVG_SPECTRUM_FILTER_DELAY = 250.0 EIGENVAL_CUTOFF = 1e-12 TIME_AVG_DELAY_FILT_SNR_THRESH = 4.0 TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = 1.5
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1851 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460722/zen.2460722.25250.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1851 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460722/zen.2460722.25250.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None, vmin=-5, vmax=5):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=vmin, vmax=vmax, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = avg_func(np.where(flags, np.nan, zscore), axis=0)
ztseries = avg_func(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
def time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Produces SNRs after time-averaging z-scores and delay filtering, accounting for flagging's effect on the filter."""
# figure out high and low band based on FM gap at 100 MHz
flagged_stretches = true_stretches(np.all(flags, axis=0))
FM_gap = [fs for fs in flagged_stretches if fs.start <= np.argmin(np.abs(freqs - 100e6)) < fs.stop][0]
low_band = slice((0 if flagged_stretches[0].start != 0 else flagged_stretches[0].stop), FM_gap.start)
high_band = slice(FM_gap.stop, (len(freqs) if flagged_stretches[-1].stop != len(freqs) else flagged_stretches[-1].start))
filt_SNR = {}
for pol in zscore:
# calculate timeavg_SNR and filter
noise_prediction = 1.0 / np.sum(~flags, axis=0)**.5
timeavg_SNR = np.nanmean(np.where(flags, np.nan, zscore[pol] / noise_prediction), axis=0)
wgts = np.where(np.isfinite(timeavg_SNR), 1, 0)
model = np.zeros_like(timeavg_SNR)
for band in [low_band, high_band]:
model[band], _, _ = dspec.fourier_filter(freqs[band], np.where(np.isfinite(timeavg_SNR[band]), timeavg_SNR[band], 0),
wgts[band], [0], [AVG_SPECTRUM_FILTER_DELAY / 1e9], mode="dpss_solve",
eigenval_cutoff=[EIGENVAL_CUTOFF], suppression_factors=[EIGENVAL_CUTOFF])
filt_SNR[pol] = timeavg_SNR - model
# correct for impact of filter
correction_factors = np.ones_like(wgts) * np.nan
for band in [low_band, high_band]:
X = dspec.dpss_operator(freqs[band], [0], filter_half_widths=[AVG_SPECTRUM_FILTER_DELAY / 1e9], eigenval_cutoff=[EIGENVAL_CUTOFF])[0]
W = wgts[band]
leverage = np.diag(X @ np.linalg.pinv(np.dot(X.T * W, X)) @ (X.T * W))
correction_factors[band] = np.where(leverage > 0, (1 - leverage)**.5, np.nan) # because the underlying data should be gaussian
filt_SNR[pol] /= correction_factors
return filt_SNR
def iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Flag whole channels based on their outlierness after delay-filterd time-averaged zscores.
This is done iteratively since the delay filter can be unduly influenced by large outliers."""
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
while True:
largest_SNR = np.nanmax(list(filt_SNR.values()))
if largest_SNR < thresh:
break
#
cut = np.max([thresh, largest_SNR / dynamic_range])
for pol in filt_SNR:
flags[:, filt_SNR[pol] > cut] = True
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag whole integrations or channels using outliers in median
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmedian, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with median z > {AVG_Z_THRESH}.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
# flag whole integrations or channels using outliers in mean
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
# flag channels based on delay filter
iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
print(f'{np.mean(flags):.3%} of flagging channels that are {TIME_AVG_DELAY_FILT_SNR_THRESH}σ outliers after delay filtering the time average.')
# watershed flagging again
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after another round of watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
24.313% of waterfall flagged to start.
All-NaN slice encountered
Flagging an additional 0 integrations and 6 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 38 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 26.842% of waterfall flagged after flagging whole times and channels with median z > 1.0. 27.450% of waterfall flagged after flagging z > 4.0 outliers.
29.675% of waterfall flagged after watershed flagging on z > 2.0 neighbors of prior flags. Flagging an additional 0 integrations and 0 channels. Flagging 43 channels previously flagged 25.00% or more.
Mean of empty slice Mean of empty slice
Flagging 286 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. 36.748% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Mean of empty slice Casting complex values to real discards the imaginary part Casting complex values to real discards the imaginary part
45.904% of flagging channels that are 4.0σ outliers after delay filtering the time average.
46.593% of waterfall flagged after another round of watershed flagging on z > 2.0 neighbors of prior flags.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra(ylim=[-3, 3], flags=flags):
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(ylim)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging(flags=flags):
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1851 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460722/zen.2460722.25250.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460722/2460722_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[np.float64(2460722.2529515876), np.float64(2460722.253510828)], [np.float64(2460722.254293765), np.float64(2460722.2547411574)], [np.float64(2460722.255412246), np.float64(2460722.2558596386)], [np.float64(2460722.261340196), np.float64(2460722.26167574)], [np.float64(2460722.2652548794), np.float64(2460722.265925968)], [np.float64(2460722.2677155375), np.float64(2460722.2678273856)], [np.float64(2460722.2699525), np.float64(2460722.270176196)], [np.float64(2460722.2716302215), np.float64(2460722.2718539177)], [np.float64(2460722.272189462), np.float64(2460722.2725250064)], [np.float64(2460722.2739790315), np.float64(2460722.2740908796)], [np.float64(2460722.274314576), np.float64(2460722.2747619683)], [np.float64(2460722.2748738164), np.float64(2460722.275433057)], [np.float64(2460722.2766633863), np.float64(2460722.277222627)], [np.float64(2460722.27822926), np.float64(2460722.278452956)], [np.float64(2460722.2791240443), np.float64(2460722.279683285)], [np.float64(2460722.2804662217), np.float64(2460722.280913614)], [np.float64(2460722.281584703), np.float64(2460722.2820320954)], [np.float64(2460722.2822557916), np.float64(2460722.2830387284)], [np.float64(2460722.2839335133), np.float64(2460722.285051994)], [np.float64(2460722.286953412), np.float64(2460722.287177108)], [np.float64(2460722.2872889563), np.float64(2460722.2876245007)], [np.float64(2460722.2881837413), np.float64(2460722.2882955894)], [np.float64(2460722.2885192856), np.float64(2460722.28885483)], [np.float64(2460722.2915391843), np.float64(2460722.2917628805)], [np.float64(2460722.2919865767), np.float64(2460722.292433969)], [np.float64(2460722.295230172), np.float64(2460722.2954538683)], [np.float64(2460722.295789412), np.float64(2460722.2959012603)], [np.float64(2460722.296684197), np.float64(2460722.2970197415)], [np.float64(2460722.2971315896), np.float64(2460722.297355286)], [np.float64(2460722.297578982), np.float64(2460722.2979145264)], [np.float64(2460722.298473767), np.float64(2460722.298585615)], [np.float64(2460722.2991448557), np.float64(2460722.2994804)], [np.float64(2460722.2997040963), np.float64(2460722.3000396406)], [np.float64(2460722.30126997), np.float64(2460722.301381818)], [np.float64(2460722.3033950836), np.float64(2460722.3035069318)], [np.float64(2460722.30361878), np.float64(2460722.303954324)], [np.float64(2460722.3050728054), np.float64(2460722.3060794384)], [np.float64(2460722.3063031347), np.float64(2460722.306750527)], [np.float64(2460722.307086071), np.float64(2460722.3074216153)], [np.float64(2460722.309770426), np.float64(2460722.3113362994)], [np.float64(2460722.3122310843), np.float64(2460722.3127903244)], [np.float64(2460722.314468046), np.float64(2460722.3150272868)], [np.float64(2460722.316257616), np.float64(2460722.316369464)], [np.float64(2460722.31838273), np.float64(2460722.318718274)], [np.float64(2460722.319613059), np.float64(2460722.320395996)], [np.float64(2460722.3221855657), np.float64(2460722.3228566544)], [np.float64(2460722.330014933), np.float64(2460722.3305741735)], [np.float64(2460722.3344888575), np.float64(2460722.334824402)], [np.float64(2460722.335048098), np.float64(2460722.3352717943)], [np.float64(2460722.3368376675), np.float64(2460722.337173212)], [np.float64(2460722.33728506), np.float64(2460722.3376206043)], [np.float64(2460722.340416807), np.float64(2460722.3407523516)], [np.float64(2460722.340864199), np.float64(2460722.3411997436)], [np.float64(2460722.342541921), np.float64(2460722.3428774653)], [np.float64(2460722.3429893134), np.float64(2460722.3433248578)], [np.float64(2460722.343660402), np.float64(2460722.344331491)], [np.float64(2460722.344667035), np.float64(2460722.3451144276)], [np.float64(2460722.3457855163), np.float64(2460722.3461210607)], [np.float64(2460722.3464566045), np.float64(2460722.347015845)], [np.float64(2460722.3483580225), np.float64(2460722.348693567)], [np.float64(2460722.348805415), np.float64(2460722.3491409593)], [np.float64(2460722.349812048), np.float64(2460722.3500357443)], [np.float64(2460722.3527200986), np.float64(2460722.352943795)], [np.float64(2460722.3562992383), np.float64(2460722.357082175)], [np.float64(2460722.357194023), np.float64(2460722.3573058713)], [np.float64(2460722.3589835926), np.float64(2460722.3590954407)], [np.float64(2460722.3601020738), np.float64(2460722.360213922)], [np.float64(2460722.360437618), np.float64(2460722.360549466)], [np.float64(2460722.361108707), np.float64(2460722.361220555)], [np.float64(2460722.3616679474), np.float64(2460722.3617797955)], [np.float64(2460722.3672603527), np.float64(2460722.367372201)], [np.float64(2460722.3692736183), np.float64(2460722.3693854664)], [np.float64(2460722.3716224288), np.float64(2460722.371734277)], [np.float64(2460722.3722935175), np.float64(2460722.3724053656)], [np.float64(2460722.3731883024), np.float64(2460722.3733001505)], [np.float64(2460722.3746423274), np.float64(2460722.3747541755)], [np.float64(2460722.3768792897), np.float64(2460722.377214834)], [np.float64(2460722.379116252), np.float64(2460722.3793399483)], [np.float64(2460722.380458429), np.float64(2460722.380570277)], [np.float64(2460722.3811295177), np.float64(2460722.381353214)], [np.float64(2460722.381465062), np.float64(2460722.3816887583)], [np.float64(2460722.3826953913), np.float64(2460722.3828072394)], [np.float64(2460722.3838138725), np.float64(2460722.384149417)], [np.float64(2460722.385827138), np.float64(2460722.3860508343)], [np.float64(2460722.3882877966), np.float64(2460722.3883996448)], [np.float64(2460722.3953342275), np.float64(2460722.395669772)], [np.float64(2460722.3977948856), np.float64(2460722.398018582)], [np.float64(2460722.403387291), np.float64(2460722.403610987)], [np.float64(2460722.4051768607), np.float64(2460722.405512405)], [np.float64(2460722.405624253), np.float64(2460722.4058479494)], [np.float64(2460722.407413823), np.float64(2460722.4077493674)], [np.float64(2460722.4100981774), np.float64(2460722.41054557)], [np.float64(2460722.411775899), np.float64(2460722.4121114435)], [np.float64(2460722.4128943803), np.float64(2460722.4132299246)], [np.float64(2460722.4165853676), np.float64(2460722.4181512413)], [np.float64(2460722.418710482), np.float64(2460722.418934178)], [np.float64(2460722.4191578743), np.float64(2460722.4194934187)], [np.float64(2460722.4198289625), np.float64(2460722.4206118993)], [np.float64(2460722.4207237475), np.float64(2460722.4209474437)], [np.float64(2460722.421282988), np.float64(2460722.4216185324)], [np.float64(2460722.4219540767), np.float64(2460722.422289621)], [np.float64(2460722.423184406), np.float64(2460722.4234081022)], [np.float64(2460722.424191039), np.float64(2460722.4245265834)], [np.float64(2460722.424973976), np.float64(2460722.425197672)], [np.float64(2460722.430566381), np.float64(2460722.4307900774)], [np.float64(2460722.4331388874), np.float64(2460722.4333625836)], [np.float64(2460722.433698128), np.float64(2460722.4342573686)], [np.float64(2460722.4363824828), np.float64(2460722.4366061785)], [np.float64(2460722.437053571), np.float64(2460722.4376128116)], [np.float64(2460722.4377246597), np.float64(2460722.437948356)], [np.float64(2460722.438060204), np.float64(2460722.4383957484)], [np.float64(2460722.4387312927), np.float64(2460722.438954989)], [np.float64(2460722.439066837), np.float64(2460722.439178685)], [np.float64(2460722.4392905333), np.float64(2460722.4395142295)], [np.float64(2460722.439737926), np.float64(2460722.44007347)], [np.float64(2460722.4405208626), np.float64(2460722.440856407)], [np.float64(2460722.4411919513), np.float64(2460722.4413037994)], [np.float64(2460722.4416393437), np.float64(2460722.442086736)], [np.float64(2460722.442198584), np.float64(2460722.442534128)], [np.float64(2460722.4429815207), np.float64(2460722.443093369)], [np.float64(2460722.4435407612), np.float64(2460722.4438763056)], [np.float64(2460722.4446592424), np.float64(2460722.4447710905)], [np.float64(2460722.4448829386), np.float64(2460722.445106635)], [np.float64(2460722.4456658754), np.float64(2460722.4458895717)], [np.float64(2460722.446225116), np.float64(2460722.446336964)], [np.float64(2460722.4467843566), np.float64(2460722.447008053)], [np.float64(2460722.447119901), np.float64(2460722.4477909897)], [np.float64(2460722.4479028373), np.float64(2460722.4482383817)], [np.float64(2460722.4483502298), np.float64(2460722.448685774)], [np.float64(2460722.448797622), np.float64(2460722.4490213185)], [np.float64(2460722.449468711), np.float64(2460722.449580559)], [np.float64(2460722.4498042553), np.float64(2460722.4499161034)], [np.float64(2460722.4501397996), np.float64(2460722.450587192)], [np.float64(2460722.45069904), np.float64(2460722.451258281)], [np.float64(2460722.451370129), np.float64(2460722.451593825)], [np.float64(2460722.4519293695), np.float64(2460722.45248861)], [np.float64(2460722.452600458), np.float64(2460722.4529360025)], [np.float64(2460722.4530478506), np.float64(2460722.453383395)], [np.float64(2460722.453718939), np.float64(2460722.453830787)], [np.float64(2460722.453942635), np.float64(2460722.454054483)], [np.float64(2460722.4541663313), np.float64(2460722.4542781794)], [np.float64(2460722.4543900276), np.float64(2460722.454613724)], [np.float64(2460722.454725572), np.float64(2460722.45483742)], [np.float64(2460722.454949268), np.float64(2460722.4551729644)], [np.float64(2460722.4552848125), np.float64(2460722.455620357)], [np.float64(2460722.455955901), np.float64(2460722.4560677493)], [np.float64(2460722.4561795974), np.float64(2460722.4562914455)], [np.float64(2460722.4565151418), np.float64(2460722.456738838)], [np.float64(2460722.456850686), np.float64(2460722.457521775)], [np.float64(2460722.457745471), np.float64(2460722.457857319)], [np.float64(2460722.4579691673), np.float64(2460722.4581928635)], [np.float64(2460722.4584165597), np.float64(2460722.4595350404)], [np.float64(2460722.459870585), np.float64(2460722.4603179772)], [np.float64(2460722.4604298254), np.float64(2460722.4605416735)], [np.float64(2460722.460877218), np.float64(2460722.460989066)], [np.float64(2460722.4617720027), np.float64(2460722.461995699)], [np.float64(2460722.462890484), np.float64(2460722.46311418)], [np.float64(2460722.4642326613), np.float64(2460722.4643445094)], [np.float64(2460722.4644563575), np.float64(2460722.4646800533)], [np.float64(2460722.4649037495), np.float64(2460722.4650155976)], [np.float64(2460722.465239294), np.float64(2460722.466357775)], [np.float64(2460722.4665814713), np.float64(2460722.4670288637)], [np.float64(2460722.467140712), np.float64(2460722.467364408)], [np.float64(2460722.4679236487), np.float64(2460722.468147345)], [np.float64(2460722.4689302817), np.float64(2460722.46904213)], [np.float64(2460722.469377674), np.float64(2460722.4694895223)], [np.float64(2460722.4699369147), np.float64(2460722.470048763)], [np.float64(2460722.470831699), np.float64(2460722.4709435473)], [np.float64(2460722.4730686615), np.float64(2460722.4731805096)], [np.float64(2460722.4765359527), np.float64(2460722.476759649)], [np.float64(2460722.478996611), np.float64(2460722.4792203074)], [np.float64(2460722.4838060797), np.float64(2460722.484141624)], [np.float64(2460722.484253472), np.float64(2460722.484924561)], [np.float64(2460722.485931194), np.float64(2460722.4862667383)], [np.float64(2460722.489174789), np.float64(2460722.489286637)], [np.float64(2460722.489398485), np.float64(2460722.4897340294)], [np.float64(2460722.490516966), np.float64(2460722.4909643587)], [np.float64(2460722.4917472955), np.float64(2460722.49208284)], [np.float64(2460722.4930894724), np.float64(2460722.4933131686)], [np.float64(2460722.4967804602), np.float64(2460722.4968923084)], [np.float64(2460722.497339701), np.float64(2460722.497451549)], [np.float64(2460722.4992411183), np.float64(2460722.4993529664)], [np.float64(2460722.520604107), np.float64(2460722.5209396514)], [np.float64(2460722.5222818283), np.float64(2460722.5225055246)], [np.float64(2460722.5251898794), np.float64(2460722.5253017275)], [np.float64(2460722.525860968), np.float64(2460722.525972816)], [np.float64(2460722.527986082), np.float64(2460722.528209778)], [np.float64(2460722.5315652215), np.float64(2460722.5316770696)], [np.float64(2460722.531900766), np.float64(2460722.532012614)], [np.float64(2460722.5466647157), np.float64(2460722.546776564)], [np.float64(2460722.553934843), np.float64(2460722.554046691)], [np.float64(2460722.5597509444), np.float64(2460722.5599746406)], [np.float64(2460722.5605338807), np.float64(2460722.560981273)], [np.float64(2460722.5643367167), np.float64(2460722.564560413)], [np.float64(2460722.567132919), np.float64(2460722.567244767)], [np.float64(2460722.5673566153), np.float64(2460722.5675803116)], [np.float64(2460722.572277932), np.float64(2460722.57238978)], [np.float64(2460722.5735082612), np.float64(2460722.5736201094)], [np.float64(2460722.583798287), np.float64(2460722.583910135)], [np.float64(2460722.5903973253), np.float64(2460722.5905091735)], [np.float64(2460722.5977793005), np.float64(2460722.598114845)], [np.float64(2460722.6003518067), np.float64(2460722.600463655)], [np.float64(2460722.601470288), np.float64(2460722.601582136)], [np.float64(2460722.6066153008), np.float64(2460722.606727149)], [np.float64(2460722.6100825923), np.float64(2460722.6104181367)], [np.float64(2460722.6156749977), np.float64(2460722.61612239)], [np.float64(2460722.6190304407), np.float64(2460722.619254137)], [np.float64(2460722.6231688205), np.float64(2460722.6233925167)], [np.float64(2460722.624622846), np.float64(2460722.6250702385)], [np.float64(2460722.6277545933), np.float64(2460722.628090137)], [np.float64(2460722.629991555), np.float64(2460722.6303270995)], [np.float64(2460722.6323403656), np.float64(2460722.632564062)], [np.float64(2460722.6331233024), np.float64(2460722.6337943906)], [np.float64(2460722.638044619), np.float64(2460722.6382683152)], [np.float64(2460722.6391630997), np.float64(2460722.639386796)], [np.float64(2460722.6398341884), np.float64(2460722.640281581)], [np.float64(2460722.6488938853), np.float64(2460722.6490057334)], [np.float64(2460722.6512426953), np.float64(2460722.6513545434)], [np.float64(2460722.65627586), np.float64(2460722.6567232525)], [np.float64(2460722.6584009742), np.float64(2460722.658960215)], [np.float64(2460722.6604142403), np.float64(2460722.6607497847)], [np.float64(2460722.6615327215), np.float64(2460722.6622038097)], [np.float64(2460722.6630985946), np.float64(2460722.663434139)], [np.float64(2460722.6641052277), np.float64(2460722.6646644683)], [np.float64(2460722.6650000126), np.float64(2460722.665447405)]] freq_flags: [[np.float64(49911499.0234375), np.float64(50155639.6484375)], [np.float64(62240600.5859375), np.float64(62973022.4609375)], [np.float64(66146850.5859375), np.float64(67123413.0859375)], [np.float64(69931030.2734375), np.float64(70053100.5859375)], [np.float64(74203491.2109375), np.float64(74569702.1484375)], [np.float64(77987670.8984375), np.float64(78109741.2109375)], [np.float64(87387084.9609375), np.float64(108016967.7734375)], [np.float64(108993530.2734375), np.float64(109115600.5859375)], [np.float64(109970092.7734375), np.float64(110092163.0859375)], [np.float64(112655639.6484375), np.float64(113021850.5859375)], [np.float64(113265991.2109375), np.float64(113388061.5234375)], [np.float64(113632202.1484375), np.float64(113754272.4609375)], [np.float64(115707397.4609375), np.float64(117172241.2109375)], [np.float64(118759155.2734375), np.float64(119369506.8359375)], [np.float64(120712280.2734375), np.float64(120834350.5859375)], [np.float64(121688842.7734375), np.float64(121810913.0859375)], [np.float64(122055053.7109375), np.float64(122177124.0234375)], [np.float64(122665405.2734375), np.float64(122909545.8984375)], [np.float64(123031616.2109375), np.float64(123275756.8359375)], [np.float64(123397827.1484375), np.float64(123641967.7734375)], [np.float64(124130249.0234375), np.float64(124252319.3359375)], [np.float64(124618530.2734375), np.float64(125228881.8359375)], [np.float64(125717163.0859375), np.float64(126083374.0234375)], [np.float64(126815795.8984375), np.float64(127182006.8359375)], [np.float64(127304077.1484375), np.float64(127670288.0859375)], [np.float64(128036499.0234375), np.float64(128402709.9609375)], [np.float64(128524780.2734375), np.float64(128646850.5859375)], [np.float64(128768920.8984375), np.float64(129135131.8359375)], [np.float64(129745483.3984375), np.float64(129867553.7109375)], [np.float64(129989624.0234375), np.float64(130111694.3359375)], [np.float64(130233764.6484375), np.float64(130477905.2734375)], [np.float64(130599975.5859375), np.float64(131332397.4609375)], [np.float64(131454467.7734375), np.float64(131698608.3984375)], [np.float64(131820678.7109375), np.float64(131942749.0234375)], [np.float64(132064819.3359375), np.float64(139022827.1484375)], [np.float64(139633178.7109375), np.float64(139755249.0234375)], [np.float64(140609741.2109375), np.float64(140731811.5234375)], [np.float64(140853881.8359375), np.float64(140975952.1484375)], [np.float64(141464233.3984375), np.float64(141952514.6484375)], [np.float64(142074584.9609375), np.float64(142318725.5859375)], [np.float64(142684936.5234375), np.float64(143539428.7109375)], [np.float64(143783569.3359375), np.float64(144027709.9609375)], [np.float64(144882202.1484375), np.float64(145004272.4609375)], [np.float64(145126342.7734375), np.float64(145248413.0859375)], [np.float64(145614624.0234375), np.float64(145736694.3359375)], [np.float64(145858764.6484375), np.float64(146713256.8359375)], [np.float64(146957397.4609375), np.float64(147201538.0859375)], [np.float64(147445678.7109375), np.float64(147567749.0234375)], [np.float64(147933959.9609375), np.float64(148056030.2734375)], [np.float64(148422241.2109375), np.float64(148544311.5234375)], [np.float64(149154663.0859375), np.float64(149276733.3984375)], [np.float64(149887084.9609375), np.float64(150009155.2734375)], [np.float64(154159545.8984375), np.float64(154403686.5234375)], [np.float64(155258178.7109375), np.float64(155380249.0234375)], [np.float64(157577514.6484375), np.float64(157699584.9609375)], [np.float64(157943725.5859375), np.float64(158065795.8984375)], [np.float64(161361694.3359375), np.float64(161483764.6484375)], [np.float64(169906616.2109375), np.float64(170150756.8359375)], [np.float64(170272827.1484375), np.float64(170394897.4609375)], [np.float64(170516967.7734375), np.float64(170639038.0859375)], [np.float64(170883178.7109375), np.float64(171005249.0234375)], [np.float64(171249389.6484375), np.float64(171371459.9609375)], [np.float64(171737670.8984375), np.float64(171859741.2109375)], [np.float64(175155639.6484375), np.float64(175399780.2734375)], [np.float64(181137084.9609375), np.float64(181259155.2734375)], [np.float64(183212280.2734375), np.float64(183334350.5859375)], [np.float64(187362670.8984375), np.float64(187606811.5234375)], [np.float64(188217163.0859375), np.float64(188339233.3984375)], [np.float64(189926147.4609375), np.float64(190048217.7734375)], [np.float64(190658569.3359375), np.float64(191879272.4609375)], [np.float64(192367553.7109375), np.float64(192611694.3359375)], [np.float64(192855834.9609375), np.float64(192977905.2734375)], [np.float64(193344116.2109375), np.float64(193588256.8359375)], [np.float64(194808959.9609375), np.float64(194931030.2734375)], [np.float64(195175170.8984375), np.float64(195297241.2109375)], [np.float64(195541381.8359375), np.float64(195785522.4609375)], [np.float64(196029663.0859375), np.float64(196273803.7109375)], [np.float64(196517944.3359375), np.float64(196640014.6484375)], [np.float64(197128295.8984375), np.float64(197372436.5234375)], [np.float64(197494506.8359375), np.float64(197616577.1484375)], [np.float64(197860717.7734375), np.float64(198471069.3359375)], [np.float64(198715209.9609375), np.float64(198959350.5859375)], [np.float64(199203491.2109375), np.float64(199325561.5234375)], [np.float64(199447631.8359375), np.float64(199569702.1484375)], [np.float64(199691772.4609375), np.float64(200302124.0234375)], [np.float64(200424194.3359375), np.float64(200790405.2734375)], [np.float64(201034545.8984375), np.float64(201156616.2109375)], [np.float64(201644897.4609375), np.float64(202377319.3359375)], [np.float64(202499389.6484375), np.float64(202621459.9609375)], [np.float64(202743530.2734375), np.float64(202987670.8984375)], [np.float64(203109741.2109375), np.float64(203231811.5234375)], [np.float64(203353881.8359375), np.float64(203720092.7734375)], [np.float64(203964233.3984375), np.float64(204086303.7109375)], [np.float64(204208374.0234375), np.float64(204330444.3359375)], [np.float64(204452514.6484375), np.float64(204696655.2734375)], [np.float64(204818725.5859375), np.float64(205307006.8359375)], [np.float64(205429077.1484375), np.float64(205673217.7734375)], [np.float64(206283569.3359375), np.float64(206405639.6484375)], [np.float64(206771850.5859375), np.float64(207015991.2109375)], [np.float64(207138061.5234375), np.float64(207382202.1484375)], [np.float64(207504272.4609375), np.float64(207626342.7734375)], [np.float64(207992553.7109375), np.float64(208114624.0234375)], [np.float64(208480834.9609375), np.float64(208724975.5859375)], [np.float64(209213256.8359375), np.float64(209335327.1484375)], [np.float64(209945678.7109375), np.float64(210067749.0234375)], [np.float64(212142944.3359375), np.float64(212265014.6484375)], [np.float64(212509155.2734375), np.float64(214340209.9609375)], [np.float64(215194702.1484375), np.float64(216415405.2734375)], [np.float64(220565795.8984375), np.float64(220932006.8359375)], [np.float64(222763061.5234375), np.float64(222885131.8359375)], [np.float64(223007202.1484375), np.float64(223495483.3984375)], [np.float64(223617553.7109375), np.float64(223739624.0234375)], [np.float64(227401733.3984375), np.float64(227523803.7109375)], [np.float64(227645874.0234375), np.float64(227767944.3359375)], [np.float64(227890014.6484375), np.float64(228012084.9609375)], [np.float64(228134155.2734375), np.float64(228256225.5859375)], [np.float64(229110717.7734375), np.float64(229354858.3984375)], [np.float64(229965209.9609375), np.float64(230087280.2734375)], [np.float64(230331420.8984375), np.float64(230819702.1484375)], [np.float64(231063842.7734375), np.float64(231185913.0859375)], [np.float64(232284545.8984375), np.float64(232528686.5234375)], [np.float64(232772827.1484375), np.float64(234359741.2109375)]] ex_ants: [[np.int64[8], Jee], [np.int64[9], Jee], [np.int64[10], Jee], [np.int64[10], Jnn], [np.int64[16], Jee], [np.int64[18], Jee], [np.int64[18], Jnn], [np.int64[20], Jee], [np.int64[20], Jnn], [np.int64[21], Jee], [np.int64[22], Jnn], [np.int64[27], Jee], [np.int64[27], Jnn], [np.int64[28], Jee], [np.int64[28], Jnn], [np.int64[29], Jee], [np.int64[29], Jnn], [np.int64[32], Jnn], [np.int64[33], Jnn], [np.int64[34], Jee], [np.int64[37], Jee], [np.int64[37], Jnn], [np.int64[40], Jnn], [np.int64[42], Jee], [np.int64[42], Jnn], [np.int64[47], Jee], [np.int64[48], Jee], [np.int64[48], Jnn], [np.int64[51], Jee], [np.int64[54], Jee], [np.int64[54], Jnn], [np.int64[55], Jee], [np.int64[58], Jee], [np.int64[58], Jnn], [np.int64[59], Jnn], [np.int64[60], Jee], [np.int64[61], Jee], [np.int64[63], Jee], [np.int64[63], Jnn], [np.int64[67], Jnn], [np.int64[68], Jee], [np.int64[70], Jee], [np.int64[70], Jnn], [np.int64[71], Jee], [np.int64[71], Jnn], [np.int64[72], Jee], [np.int64[72], Jnn], [np.int64[75], Jee], [np.int64[75], Jnn], [np.int64[77], Jnn], [np.int64[78], Jee], [np.int64[82], Jee], [np.int64[86], Jee], [np.int64[86], Jnn], [np.int64[92], Jee], [np.int64[93], Jee], [np.int64[95], Jee], [np.int64[97], Jnn], [np.int64[98], Jnn], [np.int64[99], Jee], [np.int64[100], Jnn], [np.int64[103], Jnn], [np.int64[104], Jee], [np.int64[104], Jnn], [np.int64[107], Jnn], [np.int64[108], Jnn], [np.int64[109], Jnn], [np.int64[119], Jee], [np.int64[119], Jnn], [np.int64[120], Jee], [np.int64[120], Jnn], [np.int64[121], Jee], [np.int64[121], Jnn], [np.int64[127], Jee], [np.int64[127], Jnn], [np.int64[130], Jnn], [np.int64[132], Jee], [np.int64[134], Jee], [np.int64[135], Jee], [np.int64[137], Jee], [np.int64[140], Jee], [np.int64[147], Jee], [np.int64[147], Jnn], [np.int64[148], Jee], [np.int64[148], Jnn], [np.int64[149], Jee], [np.int64[149], Jnn], [np.int64[150], Jee], [np.int64[150], Jnn], [np.int64[153], Jnn], [np.int64[158], Jnn], [np.int64[161], Jnn], [np.int64[167], Jee], [np.int64[167], Jnn], [np.int64[168], Jee], [np.int64[168], Jnn], [np.int64[169], Jee], [np.int64[169], Jnn], [np.int64[170], Jee], [np.int64[170], Jnn], [np.int64[171], Jnn], [np.int64[180], Jnn], [np.int64[182], Jee], [np.int64[188], Jee], [np.int64[188], Jnn], [np.int64[189], Jee], [np.int64[189], Jnn], [np.int64[190], Jee], [np.int64[190], Jnn], [np.int64[191], Jee], [np.int64[191], Jnn], [np.int64[198], Jnn], [np.int64[199], Jee], [np.int64[199], Jnn], [np.int64[200], Jee], [np.int64[200], Jnn], [np.int64[202], Jnn], [np.int64[208], Jee], [np.int64[209], Jnn], [np.int64[212], Jnn], [np.int64[213], Jee], [np.int64[215], Jee], [np.int64[215], Jnn], [np.int64[216], Jee], [np.int64[216], Jnn], [np.int64[218], Jee], [np.int64[218], Jnn], [np.int64[232], Jee], [np.int64[238], Jnn], [np.int64[239], Jee], [np.int64[240], Jee], [np.int64[240], Jnn], [np.int64[243], Jee], [np.int64[245], Jnn], [np.int64[246], Jee], [np.int64[250], Jee], [np.int64[251], Jee], [np.int64[253], Jnn], [np.int64[255], Jnn], [np.int64[261], Jnn], [np.int64[262], Jee], [np.int64[262], Jnn], [np.int64[268], Jnn], [np.int64[320], Jee], [np.int64[320], Jnn], [np.int64[321], Jee], [np.int64[321], Jnn], [np.int64[322], Jee], [np.int64[322], Jnn], [np.int64[323], Jee], [np.int64[323], Jnn], [np.int64[324], Jee], [np.int64[324], Jnn], [np.int64[325], Jee], [np.int64[325], Jnn], [np.int64[326], Jee], [np.int64[326], Jnn], [np.int64[327], Jee], [np.int64[327], Jnn], [np.int64[328], Jee], [np.int64[328], Jnn], [np.int64[329], Jee], [np.int64[329], Jnn], [np.int64[331], Jee], [np.int64[331], Jnn], [np.int64[332], Jee], [np.int64[332], Jnn], [np.int64[333], Jee], [np.int64[333], Jnn], [np.int64[336], Jee], [np.int64[336], Jnn], [np.int64[340], Jee], [np.int64[340], Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.7.1.dev18+g10e9584 hera_qm: 2.2.1.dev2+ga535e9e hera_filters: 0.1.6.dev9+gf165ec1
hera_notebook_templates: 0.1.dev989+gee0995d pyuvdata: 3.1.3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 37.13 minutes.