Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated October 13, 2024
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from hera_filters import dspec
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 4))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 2))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
AVG_SPECTRUM_FILTER_DELAY = float(os.environ.get("AVG_SPECTRUM_FILTER_DELAY", 250)) # in ns
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
TIME_AVG_DELAY_FILT_SNR_THRESH = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_THRESH", 4.0))
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE", 1.5))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC', 'AVG_SPECTRUM_FILTER_DELAY',
'EIGENVAL_CUTOFF', 'TIME_AVG_DELAY_FILT_SNR_THRESH', 'TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 4.0 WS_Z_THRESH = 2.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1 AVG_SPECTRUM_FILTER_DELAY = 250.0 EIGENVAL_CUTOFF = 1e-12 TIME_AVG_DELAY_FILT_SNR_THRESH = 4.0 TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = 1.5
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1851 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460728/zen.2460728.25241.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1851 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460728/zen.2460728.25241.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None, vmin=-5, vmax=5):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=vmin, vmax=vmax, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = avg_func(np.where(flags, np.nan, zscore), axis=0)
ztseries = avg_func(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
def time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Produces SNRs after time-averaging z-scores and delay filtering, accounting for flagging's effect on the filter."""
# figure out high and low band based on FM gap at 100 MHz
flagged_stretches = true_stretches(np.all(flags, axis=0))
FM_gap = [fs for fs in flagged_stretches if fs.start <= np.argmin(np.abs(freqs - 100e6)) < fs.stop][0]
low_band = slice((0 if flagged_stretches[0].start != 0 else flagged_stretches[0].stop), FM_gap.start)
high_band = slice(FM_gap.stop, (len(freqs) if flagged_stretches[-1].stop != len(freqs) else flagged_stretches[-1].start))
filt_SNR = {}
for pol in zscore:
# calculate timeavg_SNR and filter
noise_prediction = 1.0 / np.sum(~flags, axis=0)**.5
timeavg_SNR = np.nanmean(np.where(flags, np.nan, zscore[pol] / noise_prediction), axis=0)
wgts = np.where(np.isfinite(timeavg_SNR), 1, 0)
model = np.zeros_like(timeavg_SNR)
for band in [low_band, high_band]:
model[band], _, _ = dspec.fourier_filter(freqs[band], np.where(np.isfinite(timeavg_SNR[band]), timeavg_SNR[band], 0),
wgts[band], [0], [AVG_SPECTRUM_FILTER_DELAY / 1e9], mode="dpss_solve",
eigenval_cutoff=[EIGENVAL_CUTOFF], suppression_factors=[EIGENVAL_CUTOFF])
filt_SNR[pol] = timeavg_SNR - model
# correct for impact of filter
correction_factors = np.ones_like(wgts) * np.nan
for band in [low_band, high_band]:
X = dspec.dpss_operator(freqs[band], [0], filter_half_widths=[AVG_SPECTRUM_FILTER_DELAY / 1e9], eigenval_cutoff=[EIGENVAL_CUTOFF])[0]
W = wgts[band]
leverage = np.diag(X @ np.linalg.pinv(np.dot(X.T * W, X)) @ (X.T * W))
correction_factors[band] = np.where(leverage > 0, (1 - leverage)**.5, np.nan) # because the underlying data should be gaussian
filt_SNR[pol] /= correction_factors
return filt_SNR
def iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Flag whole channels based on their outlierness after delay-filterd time-averaged zscores.
This is done iteratively since the delay filter can be unduly influenced by large outliers."""
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
while True:
largest_SNR = np.nanmax(list(filt_SNR.values()))
if largest_SNR < thresh:
break
#
cut = np.max([thresh, largest_SNR / dynamic_range])
for pol in filt_SNR:
flags[:, filt_SNR[pol] > cut] = True
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag whole integrations or channels using outliers in median
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmedian, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with median z > {AVG_Z_THRESH}.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
# flag whole integrations or channels using outliers in mean
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
# flag channels based on delay filter
iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
print(f'{np.mean(flags):.3%} of flagging channels that are {TIME_AVG_DELAY_FILT_SNR_THRESH}σ outliers after delay filtering the time average.')
# watershed flagging again
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after another round of watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
31.821% of waterfall flagged to start.
All-NaN slice encountered
Flagging an additional 0 integrations and 11 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 3 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 4 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 32.661% of waterfall flagged after flagging whole times and channels with median z > 1.0. 33.311% of waterfall flagged after flagging z > 4.0 outliers.
35.182% of waterfall flagged after watershed flagging on z > 2.0 neighbors of prior flags. Flagging an additional 0 integrations and 0 channels. Flagging 21 channels previously flagged 25.00% or more. Flagging 251 times previously flagged 10.00% or more.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 40.566% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Mean of empty slice Casting complex values to real discards the imaginary part Casting complex values to real discards the imaginary part
44.957% of flagging channels that are 4.0σ outliers after delay filtering the time average.
45.409% of waterfall flagged after another round of watershed flagging on z > 2.0 neighbors of prior flags.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra(ylim=[-3, 3], flags=flags):
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(ylim)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging(flags=flags):
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1851 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460728/zen.2460728.25241.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460728/2460728_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[np.float64(2460728.252299411), np.float64(2460728.2630368294)], [np.float64(2460728.263372374), np.float64(2460728.263484222)], [np.float64(2460728.263819766), np.float64(2460728.264602703)], [np.float64(2460728.2649382474), np.float64(2460728.265721184)], [np.float64(2460728.2659448804), np.float64(2460728.2661685767)], [np.float64(2460728.266392273), np.float64(2460728.266615969)], [np.float64(2460728.2670633616), np.float64(2460728.267398906)], [np.float64(2460728.2675107536), np.float64(2460728.267846298)], [np.float64(2460728.2681818423), np.float64(2460728.2684055385)], [np.float64(2460728.268852931), np.float64(2460728.268964779)], [np.float64(2460728.269635868), np.float64(2460728.2710898933)], [np.float64(2460728.2722083745), np.float64(2460728.272543919)], [np.float64(2460728.272655767), np.float64(2460728.2729913113)], [np.float64(2460728.2755638175), np.float64(2460728.276123058)], [np.float64(2460728.2764586024), np.float64(2460728.278024476)], [np.float64(2460728.2801495898), np.float64(2460728.280485134)], [np.float64(2460728.2818273115), np.float64(2460728.282162856)], [np.float64(2460728.2827220964), np.float64(2460728.283169489)], [np.float64(2460728.2835050332), np.float64(2460728.2838405776)], [np.float64(2460728.2839524257), np.float64(2460728.284176122)], [np.float64(2460728.2843998177), np.float64(2460728.2850709064)], [np.float64(2460728.2851827545), np.float64(2460728.2852946026)], [np.float64(2460728.285741995), np.float64(2460728.285853843)], [np.float64(2460728.2860775394), np.float64(2460728.2869723244)], [np.float64(2460728.2870841725), np.float64(2460728.287419717)], [np.float64(2460728.287755261), np.float64(2460728.2878671093)], [np.float64(2460728.2882026536), np.float64(2460728.2901040716)], [np.float64(2460728.290887008), np.float64(2460728.294018755)], [np.float64(2460728.2944661477), np.float64(2460728.2951372364)], [np.float64(2460728.2954727807), np.float64(2460728.295584629)], [np.float64(2460728.2956964765), np.float64(2460728.2958083246)], [np.float64(2460728.2959201727), np.float64(2460728.296032021)], [np.float64(2460728.296255717), np.float64(2460728.2964794133)], [np.float64(2460728.2965912614), np.float64(2460728.2969268057)], [np.float64(2460728.297150502), np.float64(2460728.297374198)], [np.float64(2460728.2974860463), np.float64(2460728.2975978944)], [np.float64(2460728.2977097426), np.float64(2460728.2978215907)], [np.float64(2460728.297933439), np.float64(2460728.298157135)], [np.float64(2460728.2986045275), np.float64(2460728.2988282237)], [np.float64(2460728.29905192), np.float64(2460728.299163768)], [np.float64(2460728.299275616), np.float64(2460728.2993874643)], [np.float64(2460728.2996111605), np.float64(2460728.2997230086)], [np.float64(2460728.2998348568), np.float64(2460728.299946705)], [np.float64(2460728.300058553), np.float64(2460728.3003940973)], [np.float64(2460728.3005059455), np.float64(2460728.3006177936)], [np.float64(2460728.3007296417), np.float64(2460728.30084149)], [np.float64(2460728.300953338), np.float64(2460728.301065186)], [np.float64(2460728.301177034), np.float64(2460728.3012888823)], [np.float64(2460728.30140073), np.float64(2460728.301512578)], [np.float64(2460728.301624426), np.float64(2460728.3017362743)], [np.float64(2460728.3018481224), np.float64(2460728.3019599705)], [np.float64(2460728.3020718186), np.float64(2460728.302407363)], [np.float64(2460728.302631059), np.float64(2460728.3027429073)], [np.float64(2460728.3029666035), np.float64(2460728.3030784517)], [np.float64(2460728.303302148), np.float64(2460728.303413996)], [np.float64(2460728.3036376922), np.float64(2460728.3037495404)], [np.float64(2460728.3039732366), np.float64(2460728.3040850847)], [np.float64(2460728.304308781), np.float64(2460728.304532477)], [np.float64(2460728.3047561734), np.float64(2460728.3048680215)], [np.float64(2460728.3049798696), np.float64(2460728.3050917177)], [np.float64(2460728.305203566), np.float64(2460728.305315414)], [np.float64(2460728.30553911), np.float64(2460728.3056509583)], [np.float64(2460728.3057628064), np.float64(2460728.3058746546)], [np.float64(2460728.3059865027), np.float64(2460728.306098351)], [np.float64(2460728.306322047), np.float64(2460728.306433895)], [np.float64(2460728.3067694395), np.float64(2460728.3068812876)], [np.float64(2460728.3069931353), np.float64(2460728.3071049834)], [np.float64(2460728.3072168315), np.float64(2460728.3073286796)], [np.float64(2460728.307552376), np.float64(2460728.307664224)], [np.float64(2460728.30788792), np.float64(2460728.3079997683)], [np.float64(2460728.3081116164), np.float64(2460728.3082234645)], [np.float64(2460728.3084471608), np.float64(2460728.3092300976)], [np.float64(2460728.309453794), np.float64(2460728.309565642)], [np.float64(2460728.309789338), np.float64(2460728.3102367306)], [np.float64(2460728.310684123), np.float64(2460728.310795971)], [np.float64(2460728.3112433637), np.float64(2460728.311355212)], [np.float64(2460728.311690756), np.float64(2460728.3118026042)], [np.float64(2460728.3120263005), np.float64(2460728.3121381486)], [np.float64(2460728.312361845), np.float64(2460728.312473693)], [np.float64(2460728.312809237), np.float64(2460728.313032933)], [np.float64(2460728.3133684774), np.float64(2460728.313927718)], [np.float64(2460728.314039566), np.float64(2460728.314151414)], [np.float64(2460728.3143751104), np.float64(2460728.314822503)], [np.float64(2460728.3152698954), np.float64(2460728.315829136)], [np.float64(2460728.315940984), np.float64(2460728.316052832)], [np.float64(2460728.3161646803), np.float64(2460728.3163883765)], [np.float64(2460728.3165002246), np.float64(2460728.316723921)], [np.float64(2460728.316835769), np.float64(2460728.317059465)], [np.float64(2460728.3171713133), np.float64(2460728.3172831615)], [np.float64(2460728.3175068577), np.float64(2460728.317730554)], [np.float64(2460728.317842402), np.float64(2460728.3180660983)], [np.float64(2460728.318289794), np.float64(2460728.318401642)], [np.float64(2460728.3185134903), np.float64(2460728.3187371865)], [np.float64(2460728.3189608827), np.float64(2460728.319072731)], [np.float64(2460728.319184579), np.float64(2460728.3195201233)], [np.float64(2460728.3198556677), np.float64(2460728.3199675158)], [np.float64(2460728.320079364), np.float64(2460728.32030306)], [np.float64(2460728.3205267563), np.float64(2460728.3206386045)], [np.float64(2460728.3208623007), np.float64(2460728.320974149)], [np.float64(2460728.3214215413), np.float64(2460728.3215333894)], [np.float64(2460728.3218689337), np.float64(2460728.322204478)], [np.float64(2460728.3224281743), np.float64(2460728.3225400224)], [np.float64(2460728.3226518705), np.float64(2460728.322987415)], [np.float64(2460728.323211111), np.float64(2460728.3233229592)], [np.float64(2460728.3237703517), np.float64(2460728.3238822)], [np.float64(2460728.3239940475), np.float64(2460728.324329592)], [np.float64(2460728.32444144), np.float64(2460728.324665136)], [np.float64(2460728.3250006805), np.float64(2460728.3251125286)], [np.float64(2460728.3252243767), np.float64(2460728.325336225)], [np.float64(2460728.325671769), np.float64(2460728.3257836173)], [np.float64(2460728.3261191617), np.float64(2460728.32623101)], [np.float64(2460728.326454706), np.float64(2460728.326566554)], [np.float64(2460728.3266784023), np.float64(2460728.3267902504)], [np.float64(2460728.3269020985), np.float64(2460728.3270139466)], [np.float64(2460728.3271257947), np.float64(2460728.327237643)], [np.float64(2460728.327573187), np.float64(2460728.3276850353)], [np.float64(2460728.3279087315), np.float64(2460728.3280205796)], [np.float64(2460728.3281324278), np.float64(2460728.328356124)], [np.float64(2460728.3286916683), np.float64(2460728.3288035165)], [np.float64(2460728.3290272127), np.float64(2460728.329250909)], [np.float64(2460728.3294746047), np.float64(2460728.329586453)], [np.float64(2460728.329810149), np.float64(2460728.329921997)], [np.float64(2460728.3301456934), np.float64(2460728.3302575415)], [np.float64(2460728.3304812377), np.float64(2460728.330704934)], [np.float64(2460728.33092863), np.float64(2460728.3310404783)], [np.float64(2460728.3313760227), np.float64(2460728.331487871)], [np.float64(2460728.331599719), np.float64(2460728.331711567)], [np.float64(2460728.3322708076), np.float64(2460728.3323826557)], [np.float64(2460728.333501137), np.float64(2460728.333612985)], [np.float64(2460728.333836681), np.float64(2460728.3339485293)], [np.float64(2460728.3342840737), np.float64(2460728.334395922)], [np.float64(2460728.336073643), np.float64(2460728.336185491)], [np.float64(2460728.3364091874), np.float64(2460728.33685658)], [np.float64(2460728.339764631), np.float64(2460728.3403238715)], [np.float64(2460728.343008226), np.float64(2460728.343120074)], [np.float64(2460728.346251821), np.float64(2460728.346475517)], [np.float64(2460728.3498309604), np.float64(2460728.3500546566)], [np.float64(2460728.3530745553), np.float64(2460728.3535219477)], [np.float64(2460728.356877391), np.float64(2460728.3569892393)], [np.float64(2460728.3573247837), np.float64(2460728.357436632)], [np.float64(2460728.358219568), np.float64(2460728.3583314163)], [np.float64(2460728.3593380493), np.float64(2460728.3594498974)], [np.float64(2460728.3596735937), np.float64(2460728.359785442)], [np.float64(2460728.361910556), np.float64(2460728.362022404)], [np.float64(2460728.364371214), np.float64(2460728.364483062)], [np.float64(2460728.3666081764), np.float64(2460728.3667200245)], [np.float64(2460728.36817405), np.float64(2460728.368285898)], [np.float64(2460728.3686214425), np.float64(2460728.3687332906)], [np.float64(2460728.369404379), np.float64(2460728.369516227)], [np.float64(2460728.369739923), np.float64(2460728.3698517713)], [np.float64(2460728.3700754675), np.float64(2460728.37052286)], [np.float64(2460728.374213848), np.float64(2460728.374325696)], [np.float64(2460728.3744375436), np.float64(2460728.3745493917)], [np.float64(2460728.37466124), np.float64(2460728.374773088)], [np.float64(2460728.374996784), np.float64(2460728.3751086323)], [np.float64(2460728.3755560247), np.float64(2460728.375667873)], [np.float64(2460728.3764508097), np.float64(2460728.376674506)], [np.float64(2460728.378575924), np.float64(2460728.378687772)], [np.float64(2460728.379806253), np.float64(2460728.3799181012)], [np.float64(2460728.3818195187), np.float64(2460728.381931367)], [np.float64(2460728.382826152), np.float64(2460728.383049848)], [np.float64(2460728.384168329), np.float64(2460728.3845038735)], [np.float64(2460728.386181595), np.float64(2460728.386405291)], [np.float64(2460728.3868526835), np.float64(2460728.387188228)], [np.float64(2460728.388306709), np.float64(2460728.3885304052)], [np.float64(2460728.3908792157), np.float64(2460728.391102912)], [np.float64(2460728.3922213926), np.float64(2460728.392445089)], [np.float64(2460728.3933398738), np.float64(2460728.393451722)], [np.float64(2460728.393787266), np.float64(2460728.3940109625)], [np.float64(2460728.399603368), np.float64(2460728.399938912)], [np.float64(2460728.404077292), np.float64(2460728.40418914)], [np.float64(2460728.415485799), np.float64(2460728.415597647)], [np.float64(2460728.4178346093), np.float64(2460728.4182820017)], [np.float64(2460728.4189530904), np.float64(2460728.419288635)], [np.float64(2460728.4211900523), np.float64(2460728.4214137485)], [np.float64(2460728.424657344), np.float64(2460728.4249928882)], [np.float64(2460728.433493344), np.float64(2460728.4337170403)], [np.float64(2460728.436177699), np.float64(2460728.436401395)], [np.float64(2460728.4370724834), np.float64(2460728.4372961796)], [np.float64(2460728.447026965), np.float64(2460728.4472506614)], [np.float64(2460728.455303725), np.float64(2460728.455527421)], [np.float64(2460728.45854732), np.float64(2460728.4587710164)], [np.float64(2460728.4639160293), np.float64(2460728.4641397255)], [np.float64(2460728.46503451), np.float64(2460728.4652582062)], [np.float64(2460728.4683899535), np.float64(2460728.4685018016)], [np.float64(2460728.471409852), np.float64(2460728.4718572446)], [np.float64(2460728.4904240305), np.float64(2460728.4906477267)], [np.float64(2460728.4915425116), np.float64(2460728.491766208)], [np.float64(2460728.5055235247), np.float64(2460728.505859069)], [np.float64(2460728.514023981), np.float64(2460728.5143595254)], [np.float64(2460728.5266628168), np.float64(2460728.526998361)], [np.float64(2460728.5302419565), np.float64(2460728.5304656527)], [np.float64(2460728.53594621), np.float64(2460728.536058058)], [np.float64(2460728.536952843), np.float64(2460728.5372883873)], [np.float64(2460728.541314919), np.float64(2460728.5427689445)], [np.float64(2460728.5548485396), np.float64(2460728.5549603878)], [np.float64(2460728.5555196283), np.float64(2460728.5556314765)], [np.float64(2460728.555967021), np.float64(2460728.5565262614)], [np.float64(2460728.5574210463), np.float64(2460728.5576447425)], [np.float64(2460728.5583158312), np.float64(2460728.5585395275)], [np.float64(2460728.5636845403), np.float64(2460728.5640200847)], [np.float64(2460728.5662570465), np.float64(2460728.566592591)], [np.float64(2460728.5683821607), np.float64(2460728.568494009)], [np.float64(2460728.5724086924), np.float64(2460728.5725205406)], [np.float64(2460728.574757503), np.float64(2460728.574869351)], [np.float64(2460728.5762115284), np.float64(2460728.577330009)], [np.float64(2460728.579343275), np.float64(2460728.5795669714)], [np.float64(2460728.580014364), np.float64(2460728.58023806)], [np.float64(2460728.580909149), np.float64(2460728.581020997)], [np.float64(2460728.587284491), np.float64(2460728.5876200353)], [np.float64(2460728.589856997), np.float64(2460728.5899688452)], [np.float64(2460728.59086363), np.float64(2460728.5909754783)], [np.float64(2460728.5910873264), np.float64(2460728.5913110226)], [np.float64(2460728.5929887444), np.float64(2460728.5931005925)], [np.float64(2460728.593436137), np.float64(2460728.593659833)], [np.float64(2460728.5944427694), np.float64(2460728.595113858)], [np.float64(2460728.595896795), np.float64(2460728.596120491)], [np.float64(2460728.5966797317), np.float64(2460728.597910061)], [np.float64(2460728.5982456054), np.float64(2460728.5983574535)], [np.float64(2460728.598916694), np.float64(2460728.5995877828)], [np.float64(2460728.600482567), np.float64(2460728.6009299597)], [np.float64(2460728.601377352), np.float64(2460728.6024958333)], [np.float64(2460728.6035024663), np.float64(2460728.6038380107)], [np.float64(2460728.604061707), np.float64(2460728.604285403)], [np.float64(2460728.6052920357), np.float64(2460728.606298669)], [np.float64(2460728.6067460612), np.float64(2460728.6071934537)], [np.float64(2460728.608535631), np.float64(2460728.609318568)], [np.float64(2460728.609542264), np.float64(2460728.610213353)], [np.float64(2460728.610884441), np.float64(2460728.611891074)], [np.float64(2460728.612002922), np.float64(2460728.6123384666)], [np.float64(2460728.6132332515), np.float64(2460728.6140161883)], [np.float64(2460728.6142398845), np.float64(2460728.6149109732)], [np.float64(2460728.6152465176), np.float64(2460728.615805758)], [np.float64(2460728.6184901125), np.float64(2460728.618825657)], [np.float64(2460728.6192730493), np.float64(2460728.6196085936)], [np.float64(2460728.6265431764), np.float64(2460728.626990569)], [np.float64(2460728.628780138), np.float64(2460728.6292275307)], [np.float64(2460728.6297867713), np.float64(2460728.6307934043)], [np.float64(2460728.6309052524), np.float64(2460728.6310171005)], [np.float64(2460728.6318000373), np.float64(2460728.6319118855)], [np.float64(2460728.6321355817), np.float64(2460728.632582974)], [np.float64(2460728.6329185185), np.float64(2460728.6334777586)], [np.float64(2460728.6354910247), np.float64(2460728.6360502653)], [np.float64(2460728.6382872276), np.float64(2460728.6389583163)], [np.float64(2460728.6404123413), np.float64(2460728.6405241895)], [np.float64(2460728.6406360376), np.float64(2460728.640971582)], [np.float64(2460728.6425374555), np.float64(2460728.642984848)], [np.float64(2460728.6442151773), np.float64(2460728.6447744174)], [np.float64(2460728.6451099617), np.float64(2460728.64522181)], [np.float64(2460728.6457810504), np.float64(2460728.646228443)], [np.float64(2460728.6468995316), np.float64(2460728.6476824684)], [np.float64(2460728.649136494), np.float64(2460728.649248342)], [np.float64(2460728.6499194307), np.float64(2460728.650031279)], [np.float64(2460728.656742165), np.float64(2460728.656854013)], [np.float64(2460728.6585317347), np.float64(2460728.658979127)], [np.float64(2460728.6604331527), np.float64(2460728.660545001)], [np.float64(2460728.6616634815), np.float64(2460728.662110874)], [np.float64(2460728.662893811), np.float64(2460728.663229355)], [np.float64(2460728.6636767476), np.float64(2460728.66412414)], [np.float64(2460728.6643478363), np.float64(2460728.6646833806)]] freq_flags: [[np.float64(49911499.0234375), np.float64(50155639.6484375)], [np.float64(62240600.5859375), np.float64(63339233.3984375)], [np.float64(66513061.5234375), np.float64(67367553.7109375)], [np.float64(69564819.3359375), np.float64(69686889.6484375)], [np.float64(69931030.2734375), np.float64(70053100.5859375)], [np.float64(71884155.2734375), np.float64(72006225.5859375)], [np.float64(73959350.5859375), np.float64(75546264.6484375)], [np.float64(77499389.6484375), np.float64(78475952.1484375)], [np.float64(87265014.6484375), np.float64(109359741.2109375)], [np.float64(109848022.4609375), np.float64(110214233.3984375)], [np.float64(112411499.0234375), np.float64(113143920.8984375)], [np.float64(113265991.2109375), np.float64(113510131.8359375)], [np.float64(113632202.1484375), np.float64(113754272.4609375)], [np.float64(115585327.1484375), np.float64(115707397.4609375)], [np.float64(116073608.3984375), np.float64(116195678.7109375)], [np.float64(116439819.3359375), np.float64(116561889.6484375)], [np.float64(116683959.9609375), np.float64(116806030.2734375)], [np.float64(124740600.5859375), np.float64(125228881.8359375)], [np.float64(127426147.4609375), np.float64(127792358.3984375)], [np.float64(129989624.0234375), np.float64(130111694.3359375)], [np.float64(136215209.9609375), np.float64(136459350.5859375)], [np.float64(136825561.5234375), np.float64(138168334.9609375)], [np.float64(138412475.5859375), np.float64(138534545.8984375)], [np.float64(138656616.2109375), np.float64(138778686.5234375)], [np.float64(138900756.8359375), np.float64(139022827.1484375)], [np.float64(139511108.3984375), np.float64(139633178.7109375)], [np.float64(141464233.3984375), np.float64(141586303.7109375)], [np.float64(141708374.0234375), np.float64(141830444.3359375)], [np.float64(142074584.9609375), np.float64(142318725.5859375)], [np.float64(142684936.5234375), np.float64(143661499.0234375)], [np.float64(143783569.3359375), np.float64(144027709.9609375)], [np.float64(144638061.5234375), np.float64(144760131.8359375)], [np.float64(144882202.1484375), np.float64(145004272.4609375)], [np.float64(145492553.7109375), np.float64(145736694.3359375)], [np.float64(146224975.5859375), np.float64(146347045.8984375)], [np.float64(147445678.7109375), np.float64(147567749.0234375)], [np.float64(147933959.9609375), np.float64(148056030.2734375)], [np.float64(148178100.5859375), np.float64(148544311.5234375)], [np.float64(149154663.0859375), np.float64(149276733.3984375)], [np.float64(149887084.9609375), np.float64(150009155.2734375)], [np.float64(152938842.7734375), np.float64(153305053.7109375)], [np.float64(153427124.0234375), np.float64(153549194.3359375)], [np.float64(153671264.6484375), np.float64(153793334.9609375)], [np.float64(154159545.8984375), np.float64(154403686.5234375)], [np.float64(155014038.0859375), np.float64(155136108.3984375)], [np.float64(155258178.7109375), np.float64(155380249.0234375)], [np.float64(155868530.2734375), np.float64(156112670.8984375)], [np.float64(156845092.7734375), np.float64(156967163.0859375)], [np.float64(157211303.7109375), np.float64(157333374.0234375)], [np.float64(157577514.6484375), np.float64(157699584.9609375)], [np.float64(157943725.5859375), np.float64(158920288.0859375)], [np.float64(159164428.7109375), np.float64(159286499.0234375)], [np.float64(159774780.2734375), np.float64(160751342.7734375)], [np.float64(161361694.3359375), np.float64(161483764.6484375)], [np.float64(169662475.5859375), np.float64(169784545.8984375)], [np.float64(169906616.2109375), np.float64(170639038.0859375)], [np.float64(170883178.7109375), np.float64(171005249.0234375)], [np.float64(171249389.6484375), np.float64(171371459.9609375)], [np.float64(171737670.8984375), np.float64(171859741.2109375)], [np.float64(174789428.7109375), np.float64(174911499.0234375)], [np.float64(175033569.3359375), np.float64(175399780.2734375)], [np.float64(175643920.8984375), np.float64(175765991.2109375)], [np.float64(179672241.2109375), np.float64(179794311.5234375)], [np.float64(181137084.9609375), np.float64(181381225.5859375)], [np.float64(181503295.8984375), np.float64(181747436.5234375)], [np.float64(183212280.2734375), np.float64(183334350.5859375)], [np.float64(186386108.3984375), np.float64(186508178.7109375)], [np.float64(187362670.8984375), np.float64(187606811.5234375)], [np.float64(189926147.4609375), np.float64(190048217.7734375)], [np.float64(190292358.3984375), np.float64(190414428.7109375)], [np.float64(190902709.9609375), np.float64(191635131.8359375)], [np.float64(192367553.7109375), np.float64(192489624.0234375)], [np.float64(193222045.8984375), np.float64(193588256.8359375)], [np.float64(195175170.8984375), np.float64(195541381.8359375)], [np.float64(195663452.1484375), np.float64(195785522.4609375)], [np.float64(195907592.7734375), np.float64(196151733.3984375)], [np.float64(196395874.0234375), np.float64(196517944.3359375)], [np.float64(196884155.2734375), np.float64(197006225.5859375)], [np.float64(197128295.8984375), np.float64(197372436.5234375)], [np.float64(198104858.3984375), np.float64(198348999.0234375)], [np.float64(198837280.2734375), np.float64(198959350.5859375)], [np.float64(199081420.8984375), np.float64(199325561.5234375)], [np.float64(200057983.3984375), np.float64(200180053.7109375)], [np.float64(200790405.2734375), np.float64(200912475.5859375)], [np.float64(201644897.4609375), np.float64(202011108.3984375)], [np.float64(203231811.5234375), np.float64(203353881.8359375)], [np.float64(203964233.3984375), np.float64(204086303.7109375)], [np.float64(204940795.8984375), np.float64(205062866.2109375)], [np.float64(205184936.5234375), np.float64(205307006.8359375)], [np.float64(206893920.8984375), np.float64(207015991.2109375)], [np.float64(207138061.5234375), np.float64(207382202.1484375)], [np.float64(207504272.4609375), np.float64(207626342.7734375)], [np.float64(208480834.9609375), np.float64(208724975.5859375)], [np.float64(209945678.7109375), np.float64(210067749.0234375)], [np.float64(210433959.9609375), np.float64(210556030.2734375)], [np.float64(211166381.8359375), np.float64(211288452.1484375)], [np.float64(212142944.3359375), np.float64(212265014.6484375)], [np.float64(215194702.1484375), np.float64(215316772.4609375)], [np.float64(215682983.3984375), np.float64(215805053.7109375)], [np.float64(219589233.3984375), np.float64(219711303.7109375)], [np.float64(219833374.0234375), np.float64(219955444.3359375)], [np.float64(220565795.8984375), np.float64(220809936.5234375)], [np.float64(221176147.4609375), np.float64(221298217.7734375)], [np.float64(222030639.6484375), np.float64(222152709.9609375)], [np.float64(222763061.5234375), np.float64(223739624.0234375)], [np.float64(223861694.3359375), np.float64(223983764.6484375)], [np.float64(225692749.0234375), np.float64(225814819.3359375)], [np.float64(227401733.3984375), np.float64(227767944.3359375)], [np.float64(229110717.7734375), np.float64(229476928.7109375)], [np.float64(229721069.3359375), np.float64(230331420.8984375)], [np.float64(231063842.7734375), np.float64(231185913.0859375)], [np.float64(233139038.0859375), np.float64(233261108.3984375)], [np.float64(233383178.7109375), np.float64(234359741.2109375)]] ex_ants: [[np.int64[4], Jee], [np.int64[8], Jee], [np.int64[9], Jee], [np.int64[10], Jee], [np.int64[10], Jnn], [np.int64[15], Jnn], [np.int64[16], Jee], [np.int64[18], Jee], [np.int64[18], Jnn], [np.int64[20], Jnn], [np.int64[21], Jee], [np.int64[27], Jee], [np.int64[27], Jnn], [np.int64[28], Jee], [np.int64[28], Jnn], [np.int64[29], Jee], [np.int64[29], Jnn], [np.int64[30], Jee], [np.int64[32], Jnn], [np.int64[33], Jee], [np.int64[33], Jnn], [np.int64[34], Jee], [np.int64[37], Jnn], [np.int64[40], Jnn], [np.int64[42], Jee], [np.int64[42], Jnn], [np.int64[44], Jee], [np.int64[44], Jnn], [np.int64[45], Jee], [np.int64[46], Jee], [np.int64[47], Jee], [np.int64[48], Jee], [np.int64[48], Jnn], [np.int64[51], Jee], [np.int64[53], Jee], [np.int64[55], Jee], [np.int64[58], Jee], [np.int64[61], Jee], [np.int64[67], Jnn], [np.int64[68], Jee], [np.int64[71], Jee], [np.int64[71], Jnn], [np.int64[72], Jnn], [np.int64[75], Jee], [np.int64[75], Jnn], [np.int64[77], Jnn], [np.int64[78], Jee], [np.int64[82], Jee], [np.int64[84], Jnn], [np.int64[92], Jee], [np.int64[93], Jee], [np.int64[97], Jnn], [np.int64[98], Jee], [np.int64[98], Jnn], [np.int64[99], Jee], [np.int64[99], Jnn], [np.int64[104], Jee], [np.int64[104], Jnn], [np.int64[109], Jnn], [np.int64[120], Jee], [np.int64[120], Jnn], [np.int64[121], Jee], [np.int64[130], Jnn], [np.int64[134], Jee], [np.int64[135], Jee], [np.int64[137], Jee], [np.int64[140], Jee], [np.int64[143], Jnn], [np.int64[158], Jnn], [np.int64[161], Jnn], [np.int64[170], Jee], [np.int64[171], Jnn], [np.int64[180], Jee], [np.int64[180], Jnn], [np.int64[188], Jnn], [np.int64[198], Jee], [np.int64[198], Jnn], [np.int64[199], Jee], [np.int64[199], Jnn], [np.int64[200], Jee], [np.int64[200], Jnn], [np.int64[202], Jnn], [np.int64[208], Jee], [np.int64[208], Jnn], [np.int64[209], Jee], [np.int64[209], Jnn], [np.int64[212], Jnn], [np.int64[213], Jee], [np.int64[213], Jnn], [np.int64[215], Jnn], [np.int64[216], Jee], [np.int64[216], Jnn], [np.int64[218], Jee], [np.int64[218], Jnn], [np.int64[232], Jee], [np.int64[238], Jnn], [np.int64[239], Jee], [np.int64[246], Jee], [np.int64[250], Jee], [np.int64[251], Jee], [np.int64[253], Jnn], [np.int64[255], Jnn], [np.int64[262], Jee], [np.int64[262], Jnn], [np.int64[268], Jnn], [np.int64[320], Jee], [np.int64[320], Jnn], [np.int64[321], Jee], [np.int64[321], Jnn], [np.int64[322], Jee], [np.int64[322], Jnn], [np.int64[323], Jee], [np.int64[323], Jnn], [np.int64[324], Jee], [np.int64[324], Jnn], [np.int64[325], Jee], [np.int64[325], Jnn], [np.int64[326], Jee], [np.int64[326], Jnn], [np.int64[327], Jee], [np.int64[327], Jnn], [np.int64[328], Jee], [np.int64[328], Jnn], [np.int64[329], Jee], [np.int64[329], Jnn], [np.int64[331], Jee], [np.int64[331], Jnn], [np.int64[332], Jee], [np.int64[332], Jnn], [np.int64[333], Jee], [np.int64[333], Jnn], [np.int64[336], Jee], [np.int64[336], Jnn], [np.int64[340], Jee], [np.int64[340], Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.7.1.dev18+g10e9584 hera_qm: 2.2.1.dev2+ga535e9e hera_filters: 0.1.6.dev9+gf165ec1
hera_notebook_templates: 0.1.dev989+gee0995d pyuvdata: 3.1.3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 32.42 minutes.