Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated October 13, 2024
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from hera_filters import dspec
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 4))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 2))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
AVG_SPECTRUM_FILTER_DELAY = float(os.environ.get("AVG_SPECTRUM_FILTER_DELAY", 250)) # in ns
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
TIME_AVG_DELAY_FILT_SNR_THRESH = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_THRESH", 4.0))
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE", 1.5))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC', 'AVG_SPECTRUM_FILTER_DELAY',
'EIGENVAL_CUTOFF', 'TIME_AVG_DELAY_FILT_SNR_THRESH', 'TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 4.0 WS_Z_THRESH = 2.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1 AVG_SPECTRUM_FILTER_DELAY = 250.0 EIGENVAL_CUTOFF = 1e-12 TIME_AVG_DELAY_FILT_SNR_THRESH = 4.0 TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = 1.5
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1851 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460731/zen.2460731.25247.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1851 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460731/zen.2460731.25247.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None, vmin=-5, vmax=5):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=vmin, vmax=vmax, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = avg_func(np.where(flags, np.nan, zscore), axis=0)
ztseries = avg_func(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
def time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Produces SNRs after time-averaging z-scores and delay filtering, accounting for flagging's effect on the filter."""
# figure out high and low band based on FM gap at 100 MHz
flagged_stretches = true_stretches(np.all(flags, axis=0))
FM_gap = [fs for fs in flagged_stretches if fs.start <= np.argmin(np.abs(freqs - 100e6)) < fs.stop][0]
low_band = slice((0 if flagged_stretches[0].start != 0 else flagged_stretches[0].stop), FM_gap.start)
high_band = slice(FM_gap.stop, (len(freqs) if flagged_stretches[-1].stop != len(freqs) else flagged_stretches[-1].start))
filt_SNR = {}
for pol in zscore:
# calculate timeavg_SNR and filter
noise_prediction = 1.0 / np.sum(~flags, axis=0)**.5
timeavg_SNR = np.nanmean(np.where(flags, np.nan, zscore[pol] / noise_prediction), axis=0)
wgts = np.where(np.isfinite(timeavg_SNR), 1, 0)
model = np.zeros_like(timeavg_SNR)
for band in [low_band, high_band]:
model[band], _, _ = dspec.fourier_filter(freqs[band], np.where(np.isfinite(timeavg_SNR[band]), timeavg_SNR[band], 0),
wgts[band], [0], [AVG_SPECTRUM_FILTER_DELAY / 1e9], mode="dpss_solve",
eigenval_cutoff=[EIGENVAL_CUTOFF], suppression_factors=[EIGENVAL_CUTOFF])
filt_SNR[pol] = timeavg_SNR - model
# correct for impact of filter
correction_factors = np.ones_like(wgts) * np.nan
for band in [low_band, high_band]:
X = dspec.dpss_operator(freqs[band], [0], filter_half_widths=[AVG_SPECTRUM_FILTER_DELAY / 1e9], eigenval_cutoff=[EIGENVAL_CUTOFF])[0]
W = wgts[band]
leverage = np.diag(X @ np.linalg.pinv(np.dot(X.T * W, X)) @ (X.T * W))
correction_factors[band] = np.where(leverage > 0, (1 - leverage)**.5, np.nan) # because the underlying data should be gaussian
filt_SNR[pol] /= correction_factors
return filt_SNR
def iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Flag whole channels based on their outlierness after delay-filterd time-averaged zscores.
This is done iteratively since the delay filter can be unduly influenced by large outliers."""
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
while True:
largest_SNR = np.nanmax(list(filt_SNR.values()))
if largest_SNR < thresh:
break
#
cut = np.max([thresh, largest_SNR / dynamic_range])
for pol in filt_SNR:
flags[:, filt_SNR[pol] > cut] = True
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag whole integrations or channels using outliers in median
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmedian, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with median z > {AVG_Z_THRESH}.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
# flag whole integrations or channels using outliers in mean
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
# flag channels based on delay filter
iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
print(f'{np.mean(flags):.3%} of flagging channels that are {TIME_AVG_DELAY_FILT_SNR_THRESH}σ outliers after delay filtering the time average.')
# watershed flagging again
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after another round of watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
26.685% of waterfall flagged to start.
All-NaN slice encountered
Flagging an additional 0 integrations and 1 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 2 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 29 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 28.503% of waterfall flagged after flagging whole times and channels with median z > 1.0. 29.197% of waterfall flagged after flagging z > 4.0 outliers.
31.277% of waterfall flagged after watershed flagging on z > 2.0 neighbors of prior flags. Flagging an additional 0 integrations and 0 channels. Flagging 41 channels previously flagged 25.00% or more. Flagging 185 times previously flagged 10.00% or more.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 36.227% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Mean of empty slice Casting complex values to real discards the imaginary part Casting complex values to real discards the imaginary part
40.339% of flagging channels that are 4.0σ outliers after delay filtering the time average.
40.854% of waterfall flagged after another round of watershed flagging on z > 2.0 neighbors of prior flags.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra(ylim=[-3, 3], flags=flags):
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(ylim)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging(flags=flags):
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1851 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460731/zen.2460731.25247.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460731/2460731_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[np.float64(2460731.253252613), np.float64(2460731.253364461)], [np.float64(2460731.255154031), np.float64(2460731.255265879)], [np.float64(2460731.256048816), np.float64(2460731.25638436)], [np.float64(2460731.2564962083), np.float64(2460731.2572791446)], [np.float64(2460731.2573909927), np.float64(2460731.258845018)], [np.float64(2460731.2590687145), np.float64(2460731.2598516513)], [np.float64(2460731.2599634994), np.float64(2460731.2600753475)], [np.float64(2460731.261417525), np.float64(2460731.26231231)], [np.float64(2460731.262983398), np.float64(2460731.263095246)], [np.float64(2460731.263766335), np.float64(2460731.2643255754)], [np.float64(2460731.264996664), np.float64(2460731.2651085122)], [np.float64(2460731.2652203604), np.float64(2460731.265667753)], [np.float64(2460731.2665625378), np.float64(2460731.2672336265)], [np.float64(2460731.2673454746), np.float64(2460731.2685758034)], [np.float64(2460731.2707009176), np.float64(2460731.271036462)], [np.float64(2460731.272266791), np.float64(2460731.272826032)], [np.float64(2460731.2739445125), np.float64(2460731.274503753)], [np.float64(2460731.27528669), np.float64(2460731.2768525635)], [np.float64(2460731.277411804), np.float64(2460731.2778591965)], [np.float64(2460731.2787539815), np.float64(2460731.279313222)], [np.float64(2460731.279760614), np.float64(2460731.2811027914)], [np.float64(2460731.28177388), np.float64(2460731.2821094245)], [np.float64(2460731.282556817), np.float64(2460731.2828923613)], [np.float64(2460731.2840108424), np.float64(2460731.284458235)], [np.float64(2460731.2863596524), np.float64(2460731.286807045)], [np.float64(2460731.288708463), np.float64(2460731.289044007)], [np.float64(2460731.2919520577), np.float64(2460731.2927349946)], [np.float64(2460731.2946364125), np.float64(2460731.294971957)], [np.float64(2460731.295195653), np.float64(2460731.2954193493)], [np.float64(2460731.2955311975), np.float64(2460731.2956430456)], [np.float64(2460731.2967615263), np.float64(2460731.2969852225)], [np.float64(2460731.297320767), np.float64(2460731.297432615)], [np.float64(2460731.297544463), np.float64(2460731.2977681593)], [np.float64(2460731.300340666), np.float64(2460731.300452514)], [np.float64(2460731.3104069955), np.float64(2460731.310966236)], [np.float64(2460731.3113017804), np.float64(2460731.3115254766)], [np.float64(2460731.315216464), np.float64(2460731.31544016)], [np.float64(2460731.3221510467), np.float64(2460731.322374743)], [np.float64(2460731.3238287685), np.float64(2460731.3239406166)], [np.float64(2460731.327519756), np.float64(2460731.327631604)], [np.float64(2460731.3291974775), np.float64(2460731.329533022)], [np.float64(2460731.330987047), np.float64(2460731.3315462875)], [np.float64(2460731.332105528), np.float64(2460731.3323292243)], [np.float64(2460731.3376979334), np.float64(2460731.338257174)], [np.float64(2460731.338369022), np.float64(2460731.3385927184)], [np.float64(2460731.3457509973), np.float64(2460731.3458628454)], [np.float64(2460731.346422086), np.float64(2460731.3468694785)], [np.float64(2460731.346981326), np.float64(2460731.3470931742)], [np.float64(2460731.3555936306), np.float64(2460731.3557054787)], [np.float64(2460731.355817327), np.float64(2460731.355929175)], [np.float64(2460731.36387039), np.float64(2460731.3639822383)], [np.float64(2460731.364653327), np.float64(2460731.3648770233)], [np.float64(2460731.367337682), np.float64(2460731.367561378)], [np.float64(2460731.3694627956), np.float64(2460731.369686492)], [np.float64(2460731.3721471503), np.float64(2460731.3722589985)], [np.float64(2460731.3724826947), np.float64(2460731.3731537834)], [np.float64(2460731.3808713024), np.float64(2460731.3810949987)], [np.float64(2460731.383555657), np.float64(2460731.3837793535)], [np.float64(2460731.3859044677), np.float64(2460731.386128164)], [np.float64(2460731.388588822), np.float64(2460731.38870067)], [np.float64(2460731.3908257843), np.float64(2460731.3911613286)], [np.float64(2460731.3912731768), np.float64(2460731.391496873)], [np.float64(2460731.3931745943), np.float64(2460731.3933982905)], [np.float64(2460731.394740468), np.float64(2460731.394964164)], [np.float64(2460731.3972011264), np.float64(2460731.397536671)], [np.float64(2460731.3988788477), np.float64(2460731.399102544)], [np.float64(2460731.4041357087), np.float64(2460731.404359405)], [np.float64(2460731.40525419), np.float64(2460731.405477886)], [np.float64(2460731.4058134304), np.float64(2460731.4060371267)], [np.float64(2460731.4065963672), np.float64(2460731.4067082154)], [np.float64(2460731.4079385446), np.float64(2460731.408274089)], [np.float64(2460731.4103992027), np.float64(2460731.410622899)], [np.float64(2460731.417893026), np.float64(2460731.4181167223)], [np.float64(2460731.421136621), np.float64(2460731.4215840134)], [np.float64(2460731.4234854314), np.float64(2460731.4238209757)], [np.float64(2460731.4268408744), np.float64(2460731.4270645706)], [np.float64(2460731.4277356593), np.float64(2460731.4278475074)], [np.float64(2460731.4287422923), np.float64(2460731.4288541405)], [np.float64(2460731.4290778367), np.float64(2460731.429189685)], [np.float64(2460731.431091103), np.float64(2460731.431650343)], [np.float64(2460731.4342228496), np.float64(2460731.4343346977)], [np.float64(2460731.4350057864), np.float64(2460731.4353413307)], [np.float64(2460731.4359005713), np.float64(2460731.4360124194)], [np.float64(2460731.438808622), np.float64(2460731.439144166)], [np.float64(2460731.4392560143), np.float64(2460731.4394797105)], [np.float64(2460731.4395915587), np.float64(2460731.440038951)], [np.float64(2460731.4421640653), np.float64(2460731.4423877615)], [np.float64(2460731.444177331), np.float64(2460731.444289179)], [np.float64(2460731.448092015), np.float64(2460731.4483157108)], [np.float64(2460731.453908116), np.float64(2460731.4541318123)], [np.float64(2460731.4542436604), np.float64(2460731.454579205)], [np.float64(2460731.4561450784), np.float64(2460731.4563687746)], [np.float64(2460731.4564806228), np.float64(2460731.456592471)], [np.float64(2460731.458493889), np.float64(2460731.458829433)], [np.float64(2460731.464757383), np.float64(2460731.465316623)], [np.float64(2460731.469231307), np.float64(2460731.4695668514)], [np.float64(2460731.4728104463), np.float64(2460731.4731459906)], [np.float64(2460731.4732578387), np.float64(2460731.473481535)], [np.float64(2460731.4749355605), np.float64(2460731.475271105)], [np.float64(2460731.4780673073), np.float64(2460731.4785146997)], [np.float64(2460731.4814227507), np.float64(2460731.481534599)], [np.float64(2460731.481758295), np.float64(2460731.4825412314)], [np.float64(2460731.485784827), np.float64(2460731.486008523)], [np.float64(2460731.498871055), np.float64(2460731.4992065993)], [np.float64(2460731.500660625), np.float64(2460731.500772473)], [np.float64(2460731.501890954), np.float64(2460731.502002802)], [np.float64(2460731.5065885745), np.float64(2460731.5068122707)], [np.float64(2460731.511398043), np.float64(2460731.5118454355)], [np.float64(2460731.515648271), np.float64(2460731.515871967)], [np.float64(2460731.517437841), np.float64(2460731.517773385)], [np.float64(2460731.522918398), np.float64(2460731.523030246)], [np.float64(2460731.527056778), np.float64(2460731.527392322)], [np.float64(2460731.52929374), np.float64(2460731.5294055883)], [np.float64(2460731.537346804), np.float64(2460731.5375705003)], [np.float64(2460731.5419325763), np.float64(2460731.5422681207)], [np.float64(2460731.5442813863), np.float64(2460731.5445050825)], [np.float64(2460731.5453998675), np.float64(2460731.5456235637)], [np.float64(2460731.5517752096), np.float64(2460731.551998906)], [np.float64(2460731.55412402), np.float64(2460731.5544595644)], [np.float64(2460731.559380881), np.float64(2460731.559492729)], [np.float64(2460731.568999818), np.float64(2460731.569111666)], [np.float64(2460731.5712367804), np.float64(2460731.5714604766)], [np.float64(2460731.5749277677), np.float64(2460731.575151464)], [np.float64(2460731.577276578), np.float64(2460731.5775002744)], [np.float64(2460731.578395059), np.float64(2460731.578618755)], [np.float64(2460731.580632021), np.float64(2460731.5808557174)], [np.float64(2460731.589915414), np.float64(2460731.5904746545)], [np.float64(2460731.5977447815), np.float64(2460731.598080326)], [np.float64(2460731.5987514146), np.float64(2460731.598975111)], [np.float64(2460731.6012120727), np.float64(2460731.601323921)], [np.float64(2460731.6080348073), np.float64(2460731.6083703516)], [np.float64(2460731.612061339), np.float64(2460731.6123968833)], [np.float64(2460731.6126205795), np.float64(2460731.612956124)], [np.float64(2460731.6134035164), np.float64(2460731.6136272126)], [np.float64(2460731.6169826556), np.float64(2460731.617541896)], [np.float64(2460731.6259305044), np.float64(2460731.626377897)], [np.float64(2460731.6271608337), np.float64(2460731.627496378)], [np.float64(2460731.6292859474), np.float64(2460731.629957036)], [np.float64(2460731.631858454), np.float64(2460731.6321939984)], [np.float64(2460731.6330887834), np.float64(2460731.633536176)], [np.float64(2460731.635102049), np.float64(2460731.6355494414)], [np.float64(2460731.635996834), np.float64(2460731.6365560745)], [np.float64(2460731.637115315), np.float64(2460731.6373390113)], [np.float64(2460731.6380101), np.float64(2460731.638121948)], [np.float64(2460731.6386811887), np.float64(2460731.639128581)], [np.float64(2460731.6428195685), np.float64(2460731.643155113)], [np.float64(2460731.6451683785), np.float64(2460731.645839467)], [np.float64(2460731.647405341), np.float64(2460731.6479645814)], [np.float64(2460731.6497541512), np.float64(2460731.6500896956)], [np.float64(2460731.650313392), np.float64(2460731.650648936)], [np.float64(2460731.6532214424), np.float64(2460731.653668835)], [np.float64(2460731.654899164), np.float64(2460731.6553465566)], [np.float64(2460731.6587019996), np.float64(2460731.6598204807)], [np.float64(2460731.6646299493), np.float64(2460731.6650773417)], [np.float64(2460731.665412886), np.float64(2460731.6660839748)], [np.float64(2460731.666307671), np.float64(2460731.666419519)]] freq_flags: [[np.float64(47103881.8359375), np.float64(47225952.1484375)], [np.float64(49911499.0234375), np.float64(50155639.6484375)], [np.float64(62118530.2734375), np.float64(63339233.3984375)], [np.float64(66024780.2734375), np.float64(67245483.3984375)], [np.float64(69931030.2734375), np.float64(70053100.5859375)], [np.float64(73959350.5859375), np.float64(75302124.0234375)], [np.float64(77377319.3359375), np.float64(78720092.7734375)], [np.float64(87265014.6484375), np.float64(108139038.0859375)], [np.float64(109237670.8984375), np.float64(109359741.2109375)], [np.float64(109603881.8359375), np.float64(109725952.1484375)], [np.float64(109970092.7734375), np.float64(110092163.0859375)], [np.float64(112533569.3359375), np.float64(113388061.5234375)], [np.float64(113632202.1484375), np.float64(113754272.4609375)], [np.float64(115585327.1484375), np.float64(115707397.4609375)], [np.float64(116073608.3984375), np.float64(116195678.7109375)], [np.float64(116439819.3359375), np.float64(116561889.6484375)], [np.float64(116683959.9609375), np.float64(116806030.2734375)], [np.float64(121322631.8359375), np.float64(122177124.0234375)], [np.float64(123519897.4609375), np.float64(123641967.7734375)], [np.float64(124618530.2734375), np.float64(125228881.8359375)], [np.float64(125717163.0859375), np.float64(125961303.7109375)], [np.float64(127304077.1484375), np.float64(127426147.4609375)], [np.float64(127548217.7734375), np.float64(127670288.0859375)], [np.float64(127914428.7109375), np.float64(128036499.0234375)], [np.float64(128524780.2734375), np.float64(128646850.5859375)], [np.float64(128890991.2109375), np.float64(129013061.5234375)], [np.float64(129379272.4609375), np.float64(129745483.3984375)], [np.float64(129989624.0234375), np.float64(130111694.3359375)], [np.float64(130355834.9609375), np.float64(130844116.2109375)], [np.float64(130966186.5234375), np.float64(131088256.8359375)], [np.float64(131210327.1484375), np.float64(131332397.4609375)], [np.float64(131454467.7734375), np.float64(135238647.4609375)], [np.float64(135604858.3984375), np.float64(135848999.0234375)], [np.float64(136093139.6484375), np.float64(138168334.9609375)], [np.float64(138290405.2734375), np.float64(138534545.8984375)], [np.float64(138656616.2109375), np.float64(138778686.5234375)], [np.float64(138900756.8359375), np.float64(139022827.1484375)], [np.float64(139144897.4609375), np.float64(139266967.7734375)], [np.float64(139389038.0859375), np.float64(139511108.3984375)], [np.float64(140609741.2109375), np.float64(140731811.5234375)], [np.float64(140853881.8359375), np.float64(140975952.1484375)], [np.float64(141464233.3984375), np.float64(141586303.7109375)], [np.float64(141708374.0234375), np.float64(141830444.3359375)], [np.float64(142074584.9609375), np.float64(142318725.5859375)], [np.float64(142684936.5234375), np.float64(143417358.3984375)], [np.float64(143539428.7109375), np.float64(143661499.0234375)], [np.float64(143783569.3359375), np.float64(144027709.9609375)], [np.float64(144638061.5234375), np.float64(145004272.4609375)], [np.float64(145492553.7109375), np.float64(145980834.9609375)], [np.float64(146224975.5859375), np.float64(146347045.8984375)], [np.float64(147445678.7109375), np.float64(147567749.0234375)], [np.float64(148422241.2109375), np.float64(148544311.5234375)], [np.float64(149154663.0859375), np.float64(149276733.3984375)], [np.float64(149887084.9609375), np.float64(150009155.2734375)], [np.float64(154159545.8984375), np.float64(154403686.5234375)], [np.float64(155014038.0859375), np.float64(155136108.3984375)], [np.float64(155258178.7109375), np.float64(155380249.0234375)], [np.float64(155868530.2734375), np.float64(156112670.8984375)], [np.float64(157577514.6484375), np.float64(157699584.9609375)], [np.float64(157943725.5859375), np.float64(158065795.8984375)], [np.float64(158187866.2109375), np.float64(158309936.5234375)], [np.float64(159164428.7109375), np.float64(159286499.0234375)], [np.float64(160263061.5234375), np.float64(160385131.8359375)], [np.float64(169906616.2109375), np.float64(170150756.8359375)], [np.float64(170272827.1484375), np.float64(170394897.4609375)], [np.float64(170516967.7734375), np.float64(170639038.0859375)], [np.float64(170883178.7109375), np.float64(171005249.0234375)], [np.float64(171249389.6484375), np.float64(171371459.9609375)], [np.float64(175155639.6484375), np.float64(175399780.2734375)], [np.float64(175521850.5859375), np.float64(175643920.8984375)], [np.float64(181137084.9609375), np.float64(181259155.2734375)], [np.float64(181503295.8984375), np.float64(181625366.2109375)], [np.float64(182479858.3984375), np.float64(182601928.7109375)], [np.float64(183212280.2734375), np.float64(183334350.5859375)], [np.float64(185409545.8984375), np.float64(185531616.2109375)], [np.float64(185653686.5234375), np.float64(185775756.8359375)], [np.float64(186386108.3984375), np.float64(186630249.0234375)], [np.float64(186752319.3359375), np.float64(186874389.6484375)], [np.float64(187362670.8984375), np.float64(187606811.5234375)], [np.float64(187728881.8359375), np.float64(187850952.1484375)], [np.float64(189682006.8359375), np.float64(189804077.1484375)], [np.float64(189926147.4609375), np.float64(190048217.7734375)], [np.float64(190292358.3984375), np.float64(190414428.7109375)], [np.float64(191024780.2734375), np.float64(191635131.8359375)], [np.float64(193222045.8984375), np.float64(193344116.2109375)], [np.float64(194442749.0234375), np.float64(194686889.6484375)], [np.float64(194931030.2734375), np.float64(195053100.5859375)], [np.float64(195175170.8984375), np.float64(195297241.2109375)], [np.float64(195663452.1484375), np.float64(195785522.4609375)], [np.float64(196029663.0859375), np.float64(196151733.3984375)], [np.float64(196395874.0234375), np.float64(196517944.3359375)], [np.float64(196884155.2734375), np.float64(197372436.5234375)], [np.float64(198104858.3984375), np.float64(198471069.3359375)], [np.float64(199203491.2109375), np.float64(199325561.5234375)], [np.float64(200057983.3984375), np.float64(200180053.7109375)], [np.float64(200790405.2734375), np.float64(200912475.5859375)], [np.float64(201644897.4609375), np.float64(201889038.0859375)], [np.float64(203231811.5234375), np.float64(203353881.8359375)], [np.float64(203964233.3984375), np.float64(204086303.7109375)], [np.float64(204940795.8984375), np.float64(205062866.2109375)], [np.float64(205184936.5234375), np.float64(205307006.8359375)], [np.float64(206771850.5859375), np.float64(207015991.2109375)], [np.float64(207138061.5234375), np.float64(207382202.1484375)], [np.float64(207504272.4609375), np.float64(207626342.7734375)], [np.float64(208480834.9609375), np.float64(208724975.5859375)], [np.float64(209945678.7109375), np.float64(210067749.0234375)], [np.float64(210433959.9609375), np.float64(210556030.2734375)], [np.float64(211166381.8359375), np.float64(211288452.1484375)], [np.float64(212142944.3359375), np.float64(212265014.6484375)], [np.float64(214462280.2734375), np.float64(214584350.5859375)], [np.float64(215194702.1484375), np.float64(215316772.4609375)], [np.float64(215682983.3984375), np.float64(215805053.7109375)], [np.float64(216659545.8984375), np.float64(216781616.2109375)], [np.float64(218978881.8359375), np.float64(219100952.1484375)], [np.float64(219589233.3984375), np.float64(219711303.7109375)], [np.float64(220565795.8984375), np.float64(220809936.5234375)], [np.float64(221176147.4609375), np.float64(221298217.7734375)], [np.float64(223007202.1484375), np.float64(223373413.0859375)], [np.float64(223617553.7109375), np.float64(223739624.0234375)], [np.float64(225692749.0234375), np.float64(225814819.3359375)], [np.float64(226425170.8984375), np.float64(226547241.2109375)], [np.float64(227401733.3984375), np.float64(227523803.7109375)], [np.float64(229110717.7734375), np.float64(229476928.7109375)], [np.float64(229965209.9609375), np.float64(230087280.2734375)], [np.float64(230575561.5234375), np.float64(230697631.8359375)], [np.float64(231063842.7734375), np.float64(231185913.0859375)], [np.float64(231796264.6484375), np.float64(231918334.9609375)], [np.float64(233139038.0859375), np.float64(233627319.3359375)], [np.float64(233993530.2734375), np.float64(234359741.2109375)]] ex_ants: [[np.int64[4], Jee], [np.int64[8], Jee], [np.int64[8], Jnn], [np.int64[9], Jee], [np.int64[10], Jee], [np.int64[10], Jnn], [np.int64[16], Jee], [np.int64[18], Jnn], [np.int64[20], Jee], [np.int64[20], Jnn], [np.int64[21], Jee], [np.int64[21], Jnn], [np.int64[22], Jee], [np.int64[22], Jnn], [np.int64[27], Jee], [np.int64[27], Jnn], [np.int64[28], Jee], [np.int64[28], Jnn], [np.int64[29], Jee], [np.int64[29], Jnn], [np.int64[30], Jee], [np.int64[31], Jee], [np.int64[31], Jnn], [np.int64[32], Jee], [np.int64[32], Jnn], [np.int64[33], Jee], [np.int64[33], Jnn], [np.int64[34], Jee], [np.int64[34], Jnn], [np.int64[36], Jee], [np.int64[37], Jnn], [np.int64[40], Jee], [np.int64[40], Jnn], [np.int64[42], Jee], [np.int64[42], Jnn], [np.int64[44], Jee], [np.int64[44], Jnn], [np.int64[45], Jee], [np.int64[45], Jnn], [np.int64[46], Jee], [np.int64[47], Jee], [np.int64[48], Jee], [np.int64[48], Jnn], [np.int64[51], Jee], [np.int64[51], Jnn], [np.int64[55], Jee], [np.int64[58], Jee], [np.int64[60], Jee], [np.int64[61], Jee], [np.int64[65], Jee], [np.int64[67], Jnn], [np.int64[68], Jee], [np.int64[71], Jee], [np.int64[71], Jnn], [np.int64[72], Jnn], [np.int64[75], Jee], [np.int64[75], Jnn], [np.int64[77], Jnn], [np.int64[78], Jee], [np.int64[82], Jee], [np.int64[82], Jnn], [np.int64[86], Jee], [np.int64[87], Jee], [np.int64[87], Jnn], [np.int64[88], Jee], [np.int64[88], Jnn], [np.int64[90], Jee], [np.int64[90], Jnn], [np.int64[92], Jee], [np.int64[93], Jee], [np.int64[94], Jee], [np.int64[95], Jee], [np.int64[97], Jnn], [np.int64[98], Jee], [np.int64[98], Jnn], [np.int64[99], Jee], [np.int64[99], Jnn], [np.int64[102], Jee], [np.int64[102], Jnn], [np.int64[104], Jee], [np.int64[104], Jnn], [np.int64[107], Jee], [np.int64[107], Jnn], [np.int64[108], Jnn], [np.int64[109], Jnn], [np.int64[110], Jee], [np.int64[119], Jnn], [np.int64[120], Jee], [np.int64[120], Jnn], [np.int64[121], Jee], [np.int64[121], Jnn], [np.int64[124], Jee], [np.int64[130], Jnn], [np.int64[132], Jee], [np.int64[134], Jee], [np.int64[135], Jee], [np.int64[136], Jnn], [np.int64[137], Jee], [np.int64[140], Jee], [np.int64[143], Jnn], [np.int64[148], Jee], [np.int64[156], Jee], [np.int64[158], Jnn], [np.int64[161], Jnn], [np.int64[170], Jee], [np.int64[171], Jnn], [np.int64[176], Jee], [np.int64[180], Jee], [np.int64[180], Jnn], [np.int64[182], Jee], [np.int64[188], Jnn], [np.int64[198], Jnn], [np.int64[199], Jee], [np.int64[199], Jnn], [np.int64[200], Jee], [np.int64[200], Jnn], [np.int64[202], Jnn], [np.int64[203], Jee], [np.int64[203], Jnn], [np.int64[208], Jee], [np.int64[209], Jnn], [np.int64[212], Jnn], [np.int64[213], Jee], [np.int64[213], Jnn], [np.int64[215], Jee], [np.int64[215], Jnn], [np.int64[216], Jee], [np.int64[216], Jnn], [np.int64[218], Jee], [np.int64[218], Jnn], [np.int64[219], Jee], [np.int64[219], Jnn], [np.int64[232], Jee], [np.int64[234], Jnn], [np.int64[238], Jnn], [np.int64[239], Jee], [np.int64[240], Jnn], [np.int64[246], Jee], [np.int64[250], Jee], [np.int64[251], Jee], [np.int64[253], Jnn], [np.int64[255], Jnn], [np.int64[262], Jee], [np.int64[262], Jnn], [np.int64[268], Jnn], [np.int64[320], Jee], [np.int64[320], Jnn], [np.int64[321], Jee], [np.int64[321], Jnn], [np.int64[322], Jee], [np.int64[322], Jnn], [np.int64[323], Jee], [np.int64[323], Jnn], [np.int64[324], Jee], [np.int64[324], Jnn], [np.int64[325], Jee], [np.int64[325], Jnn], [np.int64[326], Jee], [np.int64[326], Jnn], [np.int64[327], Jee], [np.int64[327], Jnn], [np.int64[328], Jee], [np.int64[328], Jnn], [np.int64[329], Jee], [np.int64[329], Jnn], [np.int64[331], Jee], [np.int64[331], Jnn], [np.int64[332], Jee], [np.int64[332], Jnn], [np.int64[333], Jee], [np.int64[333], Jnn], [np.int64[336], Jee], [np.int64[336], Jnn], [np.int64[340], Jee], [np.int64[340], Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.7.1.dev18+g10e9584 hera_qm: 2.2.1.dev2+ga535e9e hera_filters: 0.1.6.dev9+gf165ec1
hera_notebook_templates: 0.1.dev989+gee0995d pyuvdata: 3.1.3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 39.33 minutes.