Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated October 13, 2024
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from hera_filters import dspec
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 4))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 2))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
AVG_SPECTRUM_FILTER_DELAY = float(os.environ.get("AVG_SPECTRUM_FILTER_DELAY", 250)) # in ns
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
TIME_AVG_DELAY_FILT_SNR_THRESH = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_THRESH", 4.0))
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE", 1.5))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC', 'AVG_SPECTRUM_FILTER_DELAY',
'EIGENVAL_CUTOFF', 'TIME_AVG_DELAY_FILT_SNR_THRESH', 'TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 4.0 WS_Z_THRESH = 2.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1 AVG_SPECTRUM_FILTER_DELAY = 250.0 EIGENVAL_CUTOFF = 1e-12 TIME_AVG_DELAY_FILT_SNR_THRESH = 4.0 TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = 1.5
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1850 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460732/zen.2460732.25241.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1850 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460732/zen.2460732.25241.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None, vmin=-5, vmax=5):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=vmin, vmax=vmax, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = avg_func(np.where(flags, np.nan, zscore), axis=0)
ztseries = avg_func(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
def time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Produces SNRs after time-averaging z-scores and delay filtering, accounting for flagging's effect on the filter."""
# figure out high and low band based on FM gap at 100 MHz
flagged_stretches = true_stretches(np.all(flags, axis=0))
FM_gap = [fs for fs in flagged_stretches if fs.start <= np.argmin(np.abs(freqs - 100e6)) < fs.stop][0]
low_band = slice((0 if flagged_stretches[0].start != 0 else flagged_stretches[0].stop), FM_gap.start)
high_band = slice(FM_gap.stop, (len(freqs) if flagged_stretches[-1].stop != len(freqs) else flagged_stretches[-1].start))
filt_SNR = {}
for pol in zscore:
# calculate timeavg_SNR and filter
noise_prediction = 1.0 / np.sum(~flags, axis=0)**.5
timeavg_SNR = np.nanmean(np.where(flags, np.nan, zscore[pol] / noise_prediction), axis=0)
wgts = np.where(np.isfinite(timeavg_SNR), 1, 0)
model = np.zeros_like(timeavg_SNR)
for band in [low_band, high_band]:
model[band], _, _ = dspec.fourier_filter(freqs[band], np.where(np.isfinite(timeavg_SNR[band]), timeavg_SNR[band], 0),
wgts[band], [0], [AVG_SPECTRUM_FILTER_DELAY / 1e9], mode="dpss_solve",
eigenval_cutoff=[EIGENVAL_CUTOFF], suppression_factors=[EIGENVAL_CUTOFF])
filt_SNR[pol] = timeavg_SNR - model
# correct for impact of filter
correction_factors = np.ones_like(wgts) * np.nan
for band in [low_band, high_band]:
X = dspec.dpss_operator(freqs[band], [0], filter_half_widths=[AVG_SPECTRUM_FILTER_DELAY / 1e9], eigenval_cutoff=[EIGENVAL_CUTOFF])[0]
W = wgts[band]
leverage = np.diag(X @ np.linalg.pinv(np.dot(X.T * W, X)) @ (X.T * W))
correction_factors[band] = np.where(leverage > 0, (1 - leverage)**.5, np.nan) # because the underlying data should be gaussian
filt_SNR[pol] /= correction_factors
return filt_SNR
def iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Flag whole channels based on their outlierness after delay-filterd time-averaged zscores.
This is done iteratively since the delay filter can be unduly influenced by large outliers."""
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
while True:
largest_SNR = np.nanmax(list(filt_SNR.values()))
if largest_SNR < thresh:
break
#
cut = np.max([thresh, largest_SNR / dynamic_range])
for pol in filt_SNR:
flags[:, filt_SNR[pol] > cut] = True
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag whole integrations or channels using outliers in median
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmedian, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with median z > {AVG_Z_THRESH}.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
# flag whole integrations or channels using outliers in mean
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
# flag channels based on delay filter
iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
print(f'{np.mean(flags):.3%} of flagging channels that are {TIME_AVG_DELAY_FILT_SNR_THRESH}σ outliers after delay filtering the time average.')
# watershed flagging again
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after another round of watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
24.050% of waterfall flagged to start.
All-NaN slice encountered
Flagging an additional 0 integrations and 8 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 9 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 25.050% of waterfall flagged after flagging whole times and channels with median z > 1.0. 25.657% of waterfall flagged after flagging z > 4.0 outliers.
27.085% of waterfall flagged after watershed flagging on z > 2.0 neighbors of prior flags.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 0 channels. Flagging 16 channels previously flagged 25.00% or more. Flagging 164 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 30.858% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Mean of empty slice Casting complex values to real discards the imaginary part
Casting complex values to real discards the imaginary part
35.127% of flagging channels that are 4.0σ outliers after delay filtering the time average.
35.531% of waterfall flagged after another round of watershed flagging on z > 2.0 neighbors of prior flags.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra(ylim=[-3, 3], flags=flags):
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(ylim)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging(flags=flags):
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1850 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460732/zen.2460732.25241.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460732/2460732_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[np.float64(2460732.2533059767), np.float64(2460732.253417825)], [np.float64(2460732.253865217), np.float64(2460732.2545363056)], [np.float64(2460732.254760002), np.float64(2460732.25487185)], [np.float64(2460732.254983698), np.float64(2460732.255095546)], [np.float64(2460732.2555429386), np.float64(2460732.2563258754)], [np.float64(2460732.2564377235), np.float64(2460732.256773268)], [np.float64(2460732.256885116), np.float64(2460732.256996964)], [np.float64(2460732.2574443566), np.float64(2460732.2575562047)], [np.float64(2460732.257779901), np.float64(2460732.2582272934)], [np.float64(2460732.2583391415), np.float64(2460732.259233926)], [np.float64(2460732.2596813184), np.float64(2460732.2597931665)], [np.float64(2460732.260128711), np.float64(2460732.2605761033)], [np.float64(2460732.261023496), np.float64(2460732.262030129)], [np.float64(2460732.2634841544), np.float64(2460732.264267091)], [np.float64(2460732.266504053), np.float64(2460732.2669514455)], [np.float64(2460732.2678462304), np.float64(2460732.268293623)], [np.float64(2460732.272543851), np.float64(2460732.2729912433)], [np.float64(2460732.2739978763), np.float64(2460732.2743334207)], [np.float64(2460732.2748926613), np.float64(2460732.275787446)], [np.float64(2460732.2783599524), np.float64(2460732.278919193)], [np.float64(2460732.280708763), np.float64(2460732.282162788)], [np.float64(2460732.2828338766), np.float64(2460732.283393117)], [np.float64(2460732.2838405096), np.float64(2460732.2845115983)], [np.float64(2460732.285182687), np.float64(2460732.2856300795)], [np.float64(2460732.2868604087), np.float64(2460732.287084105)], [np.float64(2460732.2871959526), np.float64(2460732.287755193)], [np.float64(2460732.289544763), np.float64(2460732.2902158517)], [np.float64(2460732.2932357504), np.float64(2460732.2933475985)], [np.float64(2460732.2941305353), np.float64(2460732.2944660797)], [np.float64(2460732.294577928), np.float64(2460732.294689776)], [np.float64(2460732.301176966), np.float64(2460732.3015125105)], [np.float64(2460732.303861321), np.float64(2460732.304532409)], [np.float64(2460732.306433827), np.float64(2460732.3065456753)], [np.float64(2460732.3100129664), np.float64(2460732.3101248145)], [np.float64(2460732.310684055), np.float64(2460732.3109077513)], [np.float64(2460732.3110195994), np.float64(2460732.3111314476)], [np.float64(2460732.311466992), np.float64(2460732.31157884)], [np.float64(2460732.3149342835), np.float64(2460732.3151579797)], [np.float64(2460732.31571722), np.float64(2460732.315829068)], [np.float64(2460732.317059397), np.float64(2460732.3172830935)], [np.float64(2460732.318625271), np.float64(2460732.318737119)], [np.float64(2460732.318848967), np.float64(2460732.318960815)], [np.float64(2460732.320638537), np.float64(2460732.320750385)], [np.float64(2460732.3237702837), np.float64(2460732.324105828)], [np.float64(2460732.3256717017), np.float64(2460732.32578355)], [np.float64(2460732.329474537), np.float64(2460732.3296982334)], [np.float64(2460732.3300337777), np.float64(2460732.330145626)], [np.float64(2460732.3319351957), np.float64(2460732.332158892)], [np.float64(2460732.3323825877), np.float64(2460732.332494436)], [np.float64(2460732.332606284), np.float64(2460732.332718132)], [np.float64(2460732.333612917), np.float64(2460732.3339484613)], [np.float64(2460732.3385342336), np.float64(2460732.338869778)], [np.float64(2460732.3395408667), np.float64(2460732.3403238035)], [np.float64(2460732.3415541328), np.float64(2460732.341665981)], [np.float64(2460732.341777829), np.float64(2460732.342001525)], [np.float64(2460732.3447977277), np.float64(2460732.344909576)], [np.float64(2460732.345021424), np.float64(2460732.34524512)], [np.float64(2460732.347817627), np.float64(2460732.348041323)], [np.float64(2460732.353410032), np.float64(2460732.3536337283)], [np.float64(2460732.3581076525), np.float64(2460732.358555045)], [np.float64(2460732.3601209186), np.float64(2460732.3605683106)], [np.float64(2460732.3624697286), np.float64(2460732.362917121)], [np.float64(2460732.364818539), np.float64(2460732.3652659315)], [np.float64(2460732.3718649694), np.float64(2460732.3722005137)], [np.float64(2460732.377569223), np.float64(2460732.377681071)], [np.float64(2460732.3793587927), np.float64(2460732.379470641)], [np.float64(2460732.3802535776), np.float64(2460732.380589122)], [np.float64(2460732.3828260843), np.float64(2460732.38304978)], [np.float64(2460732.384168261), np.float64(2460732.3842801093)], [np.float64(2460732.385957831), np.float64(2460732.3861815273)], [np.float64(2460732.3862933754), np.float64(2460732.3864052235)], [np.float64(2460732.3884184896), np.float64(2460732.3885303377)], [np.float64(2460732.4004980847), np.float64(2460732.400609933)], [np.float64(2460732.4039653763), np.float64(2460732.4041890725)], [np.float64(2460732.407208971), np.float64(2460732.4074326674)], [np.float64(2460732.410005174), np.float64(2460732.4103407185)], [np.float64(2460732.4134724652), np.float64(2460732.4136961615)], [np.float64(2460732.4148146426), np.float64(2460732.415038339)], [np.float64(2460732.41850563), np.float64(2460732.4188411743)], [np.float64(2460732.42264401), np.float64(2460732.422867706)], [np.float64(2460732.4233150985), np.float64(2460732.423874339)], [np.float64(2460732.4336051242), np.float64(2460732.4340525167)], [np.float64(2460732.434276213), np.float64(2460732.434388061)], [np.float64(2460732.443671454), np.float64(2460732.444342543)], [np.float64(2460732.444566239), np.float64(2460732.4447899354)], [np.float64(2460732.456422138), np.float64(2460732.456533986)], [np.float64(2460732.4589946447), np.float64(2460732.459218341)], [np.float64(2460732.4600012777), np.float64(2460732.460336822)], [np.float64(2460732.4606723664), np.float64(2460732.4607842145)], [np.float64(2460732.4649225944), np.float64(2460732.4650344425)], [np.float64(2460732.467271405), np.float64(2460732.4674951006)], [np.float64(2460732.483265684), np.float64(2460732.483377532)], [np.float64(2460732.4870685195), np.float64(2460732.4872922157)], [np.float64(2460732.489641026), np.float64(2460732.4898647224)], [np.float64(2460732.4912068993), np.float64(2460732.4913187474)], [np.float64(2460732.491877988), np.float64(2460732.491989836)], [np.float64(2460732.4934438616), np.float64(2460732.493667558)], [np.float64(2460732.5072011785), np.float64(2460732.5074248747)], [np.float64(2460732.5092144446), np.float64(2460732.5093262927)], [np.float64(2460732.510444774), np.float64(2460732.510556622)], [np.float64(2460732.5133528244), np.float64(2460732.5134646725)], [np.float64(2460732.5225243694), np.float64(2460732.5227480656)], [np.float64(2460732.5234191543), np.float64(2460732.5236428506)], [np.float64(2460732.5259916605), np.float64(2460732.526215357)], [np.float64(2460732.528228623), np.float64(2460732.528452319)], [np.float64(2460732.5331499395), np.float64(2460732.5333736357)], [np.float64(2460732.533597332), np.float64(2460732.533821028)], [np.float64(2460732.5339328763), np.float64(2460732.5340447244)], [np.float64(2460732.5354987495), np.float64(2460732.5357224457)], [np.float64(2460732.541203003), np.float64(2460732.541426699)], [np.float64(2460732.5426570284), np.float64(2460732.5427688765)], [np.float64(2460732.5462361677), np.float64(2460732.546348016)], [np.float64(2460732.550374548), np.float64(2460732.550598244)], [np.float64(2460732.5564143457), np.float64(2460732.55674989)], [np.float64(2460732.561111966), np.float64(2460732.5613356624)], [np.float64(2460732.5645792573), np.float64(2460732.5648029535)], [np.float64(2460732.5721849287), np.float64(2460732.572520473)], [np.float64(2460732.5743100424), np.float64(2460732.5744218905)], [np.float64(2460732.579678752), np.float64(2460732.5797906)], [np.float64(2460732.5806853846), np.float64(2460732.580909081)], [np.float64(2460732.587172575), np.float64(2460732.5877318154)], [np.float64(2460732.5887384485), np.float64(2460732.589409537)], [np.float64(2460732.590304322), np.float64(2460732.59041617)], [np.float64(2460732.592653132), np.float64(2460732.59276498)], [np.float64(2460732.5931005245), np.float64(2460732.5932123726)], [np.float64(2460732.5952256387), np.float64(2460732.595449335)], [np.float64(2460732.5961204236), np.float64(2460732.596567816)], [np.float64(2460732.5974626006), np.float64(2460732.5975744487)], [np.float64(2460732.598021841), np.float64(2460732.5981336893)], [np.float64(2460732.598804778), np.float64(2460732.598916626)], [np.float64(2460732.604285335), np.float64(2460732.6043971833)], [np.float64(2460732.6080881706), np.float64(2460732.608423715)], [np.float64(2460732.6089829556), np.float64(2460732.6090948037)], [np.float64(2460732.613233184), np.float64(2460732.6135687283)], [np.float64(2460732.613680576), np.float64(2460732.613904272)], [np.float64(2460732.614687209), np.float64(2460732.6150227534)], [np.float64(2460732.6159175383), np.float64(2460732.6162530826)], [np.float64(2460732.616812323), np.float64(2460732.6170360195)], [np.float64(2460732.6194966775), np.float64(2460732.619832222)], [np.float64(2460732.6234113616), np.float64(2460732.623858754)], [np.float64(2460732.628108982), np.float64(2460732.628332678)], [np.float64(2460732.631464425), np.float64(2460732.6319118175)], [np.float64(2460732.632582906), np.float64(2460732.6326947543)], [np.float64(2460732.6337013873), np.float64(2460732.6340369317)], [np.float64(2460732.6359383496), np.float64(2460732.636609438)], [np.float64(2460732.6432084762), np.float64(2460732.6436558687)], [np.float64(2460732.6473468565), np.float64(2460732.6477942485)], [np.float64(2460732.648017945), np.float64(2460732.648353489)], [np.float64(2460732.6485771853), np.float64(2460732.649024578)], [np.float64(2460732.650925996), np.float64(2460732.6515970845)], [np.float64(2460732.653386654), np.float64(2460732.653498502)], [np.float64(2460732.656630249), np.float64(2460732.6567420973)], [np.float64(2460732.657525034), np.float64(2460732.6576368823)], [np.float64(2460732.6630055914), np.float64(2460732.6633411357)], [np.float64(2460732.6654662495), np.float64(2460732.665913642)]] freq_flags: [[np.float64(49911499.0234375), np.float64(50155639.6484375)], [np.float64(62240600.5859375), np.float64(63461303.7109375)], [np.float64(66024780.2734375), np.float64(67123413.0859375)], [np.float64(69931030.2734375), np.float64(70053100.5859375)], [np.float64(73959350.5859375), np.float64(75180053.7109375)], [np.float64(77621459.9609375), np.float64(78475952.1484375)], [np.float64(85189819.3359375), np.float64(85433959.9609375)], [np.float64(87265014.6484375), np.float64(108261108.3984375)], [np.float64(109848022.4609375), np.float64(110092163.0859375)], [np.float64(112533569.3359375), np.float64(113143920.8984375)], [np.float64(113265991.2109375), np.float64(113388061.5234375)], [np.float64(113632202.1484375), np.float64(113754272.4609375)], [np.float64(115707397.4609375), np.float64(116806030.2734375)], [np.float64(124740600.5859375), np.float64(125228881.8359375)], [np.float64(127548217.7734375), np.float64(127670288.0859375)], [np.float64(129623413.0859375), np.float64(130355834.9609375)], [np.float64(135482788.0859375), np.float64(135604858.3984375)], [np.float64(136337280.2734375), np.float64(136459350.5859375)], [np.float64(136947631.8359375), np.float64(138046264.6484375)], [np.float64(138656616.2109375), np.float64(138778686.5234375)], [np.float64(141464233.3984375), np.float64(141586303.7109375)], [np.float64(141708374.0234375), np.float64(141830444.3359375)], [np.float64(142074584.9609375), np.float64(142318725.5859375)], [np.float64(142684936.5234375), np.float64(143539428.7109375)], [np.float64(143783569.3359375), np.float64(144027709.9609375)], [np.float64(144638061.5234375), np.float64(144760131.8359375)], [np.float64(144882202.1484375), np.float64(145004272.4609375)], [np.float64(145492553.7109375), np.float64(145614624.0234375)], [np.float64(146224975.5859375), np.float64(146347045.8984375)], [np.float64(147445678.7109375), np.float64(147567749.0234375)], [np.float64(148178100.5859375), np.float64(148544311.5234375)], [np.float64(149154663.0859375), np.float64(149276733.3984375)], [np.float64(149887084.9609375), np.float64(150009155.2734375)], [np.float64(153060913.0859375), np.float64(153182983.3984375)], [np.float64(153427124.0234375), np.float64(153549194.3359375)], [np.float64(153671264.6484375), np.float64(153793334.9609375)], [np.float64(154159545.8984375), np.float64(154403686.5234375)], [np.float64(155014038.0859375), np.float64(155136108.3984375)], [np.float64(155258178.7109375), np.float64(155380249.0234375)], [np.float64(155868530.2734375), np.float64(156112670.8984375)], [np.float64(157577514.6484375), np.float64(157699584.9609375)], [np.float64(158187866.2109375), np.float64(158309936.5234375)], [np.float64(158432006.8359375), np.float64(158798217.7734375)], [np.float64(159164428.7109375), np.float64(159286499.0234375)], [np.float64(160140991.2109375), np.float64(160385131.8359375)], [np.float64(161361694.3359375), np.float64(161483764.6484375)], [np.float64(169784545.8984375), np.float64(171737670.8984375)], [np.float64(171859741.2109375), np.float64(171981811.5234375)], [np.float64(174911499.0234375), np.float64(175033569.3359375)], [np.float64(175155639.6484375), np.float64(175399780.2734375)], [np.float64(175521850.5859375), np.float64(175643920.8984375)], [np.float64(181137084.9609375), np.float64(181381225.5859375)], [np.float64(183212280.2734375), np.float64(183334350.5859375)], [np.float64(186386108.3984375), np.float64(186508178.7109375)], [np.float64(187362670.8984375), np.float64(187606811.5234375)], [np.float64(189193725.5859375), np.float64(189315795.8984375)], [np.float64(189926147.4609375), np.float64(190048217.7734375)], [np.float64(190292358.3984375), np.float64(190414428.7109375)], [np.float64(191024780.2734375), np.float64(191513061.5234375)], [np.float64(193222045.8984375), np.float64(193344116.2109375)], [np.float64(195663452.1484375), np.float64(195785522.4609375)], [np.float64(196884155.2734375), np.float64(197006225.5859375)], [np.float64(197128295.8984375), np.float64(197372436.5234375)], [np.float64(197860717.7734375), np.float64(198593139.6484375)], [np.float64(199203491.2109375), np.float64(199325561.5234375)], [np.float64(200057983.3984375), np.float64(200180053.7109375)], [np.float64(200790405.2734375), np.float64(200912475.5859375)], [np.float64(201644897.4609375), np.float64(201889038.0859375)], [np.float64(203231811.5234375), np.float64(203353881.8359375)], [np.float64(203964233.3984375), np.float64(204086303.7109375)], [np.float64(204940795.8984375), np.float64(205062866.2109375)], [np.float64(205184936.5234375), np.float64(205307006.8359375)], [np.float64(206893920.8984375), np.float64(207015991.2109375)], [np.float64(207138061.5234375), np.float64(207382202.1484375)], [np.float64(207504272.4609375), np.float64(207626342.7734375)], [np.float64(208480834.9609375), np.float64(208724975.5859375)], [np.float64(209945678.7109375), np.float64(210067749.0234375)], [np.float64(212142944.3359375), np.float64(212265014.6484375)], [np.float64(215194702.1484375), np.float64(215316772.4609375)], [np.float64(216659545.8984375), np.float64(216781616.2109375)], [np.float64(219589233.3984375), np.float64(219711303.7109375)], [np.float64(219833374.0234375), np.float64(219955444.3359375)], [np.float64(220565795.8984375), np.float64(220809936.5234375)], [np.float64(221176147.4609375), np.float64(221298217.7734375)], [np.float64(223007202.1484375), np.float64(223495483.3984375)], [np.float64(223617553.7109375), np.float64(223739624.0234375)], [np.float64(225692749.0234375), np.float64(225814819.3359375)], [np.float64(227401733.3984375), np.float64(227523803.7109375)], [np.float64(227645874.0234375), np.float64(227767944.3359375)], [np.float64(227890014.6484375), np.float64(228012084.9609375)], [np.float64(229110717.7734375), np.float64(229354858.3984375)], [np.float64(229965209.9609375), np.float64(230087280.2734375)], [np.float64(230331420.8984375), np.float64(230697631.8359375)], [np.float64(231063842.7734375), np.float64(231185913.0859375)], [np.float64(233383178.7109375), np.float64(234359741.2109375)]] ex_ants: [[np.int64[4], Jee], [np.int64[8], Jee], [np.int64[9], Jee], [np.int64[10], Jee], [np.int64[10], Jnn], [np.int64[16], Jee], [np.int64[18], Jnn], [np.int64[20], Jnn], [np.int64[21], Jee], [np.int64[22], Jee], [np.int64[22], Jnn], [np.int64[27], Jee], [np.int64[27], Jnn], [np.int64[28], Jee], [np.int64[28], Jnn], [np.int64[29], Jee], [np.int64[29], Jnn], [np.int64[30], Jee], [np.int64[32], Jnn], [np.int64[33], Jee], [np.int64[33], Jnn], [np.int64[34], Jee], [np.int64[34], Jnn], [np.int64[37], Jee], [np.int64[37], Jnn], [np.int64[40], Jnn], [np.int64[42], Jee], [np.int64[42], Jnn], [np.int64[44], Jee], [np.int64[44], Jnn], [np.int64[45], Jee], [np.int64[45], Jnn], [np.int64[46], Jee], [np.int64[47], Jee], [np.int64[48], Jee], [np.int64[48], Jnn], [np.int64[51], Jee], [np.int64[55], Jee], [np.int64[58], Jee], [np.int64[61], Jee], [np.int64[67], Jnn], [np.int64[68], Jee], [np.int64[71], Jee], [np.int64[71], Jnn], [np.int64[72], Jnn], [np.int64[75], Jee], [np.int64[75], Jnn], [np.int64[78], Jee], [np.int64[80], Jnn], [np.int64[82], Jee], [np.int64[85], Jnn], [np.int64[86], Jee], [np.int64[87], Jee], [np.int64[92], Jee], [np.int64[97], Jnn], [np.int64[98], Jee], [np.int64[98], Jnn], [np.int64[99], Jee], [np.int64[99], Jnn], [np.int64[103], Jee], [np.int64[104], Jnn], [np.int64[107], Jnn], [np.int64[109], Jnn], [np.int64[116], Jnn], [np.int64[120], Jee], [np.int64[120], Jnn], [np.int64[121], Jee], [np.int64[121], Jnn], [np.int64[124], Jnn], [np.int64[127], Jee], [np.int64[130], Jnn], [np.int64[131], Jnn], [np.int64[135], Jee], [np.int64[136], Jnn], [np.int64[137], Jee], [np.int64[143], Jnn], [np.int64[158], Jnn], [np.int64[161], Jnn], [np.int64[170], Jee], [np.int64[171], Jnn], [np.int64[175], Jnn], [np.int64[180], Jee], [np.int64[180], Jnn], [np.int64[188], Jnn], [np.int64[199], Jee], [np.int64[199], Jnn], [np.int64[200], Jee], [np.int64[200], Jnn], [np.int64[202], Jnn], [np.int64[204], Jee], [np.int64[208], Jee], [np.int64[209], Jnn], [np.int64[212], Jnn], [np.int64[213], Jee], [np.int64[213], Jnn], [np.int64[215], Jnn], [np.int64[216], Jee], [np.int64[216], Jnn], [np.int64[218], Jee], [np.int64[218], Jnn], [np.int64[232], Jee], [np.int64[238], Jnn], [np.int64[239], Jee], [np.int64[240], Jee], [np.int64[240], Jnn], [np.int64[245], Jnn], [np.int64[246], Jee], [np.int64[250], Jee], [np.int64[251], Jee], [np.int64[253], Jnn], [np.int64[255], Jnn], [np.int64[262], Jee], [np.int64[262], Jnn], [np.int64[267], Jee], [np.int64[268], Jnn], [np.int64[295], Jee], [np.int64[295], Jnn], [np.int64[320], Jee], [np.int64[320], Jnn], [np.int64[321], Jee], [np.int64[321], Jnn], [np.int64[322], Jee], [np.int64[322], Jnn], [np.int64[323], Jee], [np.int64[323], Jnn], [np.int64[324], Jee], [np.int64[324], Jnn], [np.int64[325], Jee], [np.int64[325], Jnn], [np.int64[326], Jee], [np.int64[326], Jnn], [np.int64[327], Jee], [np.int64[327], Jnn], [np.int64[328], Jee], [np.int64[328], Jnn], [np.int64[329], Jee], [np.int64[329], Jnn], [np.int64[331], Jee], [np.int64[331], Jnn], [np.int64[332], Jee], [np.int64[332], Jnn], [np.int64[333], Jee], [np.int64[333], Jnn], [np.int64[336], Jee], [np.int64[336], Jnn], [np.int64[340], Jee], [np.int64[340], Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.7.1.dev18+g10e9584 hera_qm: 2.2.1.dev2+ga535e9e hera_filters: 0.1.6.dev9+gf165ec1
hera_notebook_templates: 0.1.dev989+gee0995d pyuvdata: 3.1.3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 50.17 minutes.