Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated October 13, 2024
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from hera_filters import dspec
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 4))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 2))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
AVG_SPECTRUM_FILTER_DELAY = float(os.environ.get("AVG_SPECTRUM_FILTER_DELAY", 250)) # in ns
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
TIME_AVG_DELAY_FILT_SNR_THRESH = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_THRESH", 4.0))
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE", 1.5))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC', 'AVG_SPECTRUM_FILTER_DELAY',
'EIGENVAL_CUTOFF', 'TIME_AVG_DELAY_FILT_SNR_THRESH', 'TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 4.0 WS_Z_THRESH = 2.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1 AVG_SPECTRUM_FILTER_DELAY = 250.0 EIGENVAL_CUTOFF = 1e-12 TIME_AVG_DELAY_FILT_SNR_THRESH = 4.0 TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = 1.5
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1851 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460734/zen.2460734.25253.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1851 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460734/zen.2460734.25253.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None, vmin=-5, vmax=5):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=vmin, vmax=vmax, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = avg_func(np.where(flags, np.nan, zscore), axis=0)
ztseries = avg_func(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
def time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Produces SNRs after time-averaging z-scores and delay filtering, accounting for flagging's effect on the filter."""
# figure out high and low band based on FM gap at 100 MHz
flagged_stretches = true_stretches(np.all(flags, axis=0))
FM_gap = [fs for fs in flagged_stretches if fs.start <= np.argmin(np.abs(freqs - 100e6)) < fs.stop][0]
low_band = slice((0 if flagged_stretches[0].start != 0 else flagged_stretches[0].stop), FM_gap.start)
high_band = slice(FM_gap.stop, (len(freqs) if flagged_stretches[-1].stop != len(freqs) else flagged_stretches[-1].start))
filt_SNR = {}
for pol in zscore:
# calculate timeavg_SNR and filter
noise_prediction = 1.0 / np.sum(~flags, axis=0)**.5
timeavg_SNR = np.nanmean(np.where(flags, np.nan, zscore[pol] / noise_prediction), axis=0)
wgts = np.where(np.isfinite(timeavg_SNR), 1, 0)
model = np.zeros_like(timeavg_SNR)
for band in [low_band, high_band]:
model[band], _, _ = dspec.fourier_filter(freqs[band], np.where(np.isfinite(timeavg_SNR[band]), timeavg_SNR[band], 0),
wgts[band], [0], [AVG_SPECTRUM_FILTER_DELAY / 1e9], mode="dpss_solve",
eigenval_cutoff=[EIGENVAL_CUTOFF], suppression_factors=[EIGENVAL_CUTOFF])
filt_SNR[pol] = timeavg_SNR - model
# correct for impact of filter
correction_factors = np.ones_like(wgts) * np.nan
for band in [low_band, high_band]:
X = dspec.dpss_operator(freqs[band], [0], filter_half_widths=[AVG_SPECTRUM_FILTER_DELAY / 1e9], eigenval_cutoff=[EIGENVAL_CUTOFF])[0]
W = wgts[band]
leverage = np.diag(X @ np.linalg.pinv(np.dot(X.T * W, X)) @ (X.T * W))
correction_factors[band] = np.where(leverage > 0, (1 - leverage)**.5, np.nan) # because the underlying data should be gaussian
filt_SNR[pol] /= correction_factors
return filt_SNR
def iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Flag whole channels based on their outlierness after delay-filterd time-averaged zscores.
This is done iteratively since the delay filter can be unduly influenced by large outliers."""
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
while True:
largest_SNR = np.nanmax(list(filt_SNR.values()))
if largest_SNR < thresh:
break
#
cut = np.max([thresh, largest_SNR / dynamic_range])
for pol in filt_SNR:
flags[:, filt_SNR[pol] > cut] = True
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag whole integrations or channels using outliers in median
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmedian, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with median z > {AVG_Z_THRESH}.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
# flag whole integrations or channels using outliers in mean
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
# flag channels based on delay filter
iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
print(f'{np.mean(flags):.3%} of flagging channels that are {TIME_AVG_DELAY_FILT_SNR_THRESH}σ outliers after delay filtering the time average.')
# watershed flagging again
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after another round of watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
25.769% of waterfall flagged to start.
All-NaN slice encountered
Flagging an additional 0 integrations and 13 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 3 integrations and 8 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 27.010% of waterfall flagged after flagging whole times and channels with median z > 1.0. 28.058% of waterfall flagged after flagging z > 4.0 outliers.
30.768% of waterfall flagged after watershed flagging on z > 2.0 neighbors of prior flags. Flagging an additional 0 integrations and 0 channels. Flagging 55 channels previously flagged 25.00% or more. Flagging 342 times previously flagged 10.00% or more.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 0 channels. Flagging 2 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 39.305% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Mean of empty slice Casting complex values to real discards the imaginary part Casting complex values to real discards the imaginary part
44.821% of flagging channels that are 4.0σ outliers after delay filtering the time average.
45.462% of waterfall flagged after another round of watershed flagging on z > 2.0 neighbors of prior flags.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra(ylim=[-3, 3], flags=flags):
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(ylim)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging(flags=flags):
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1851 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460734/zen.2460734.25253.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460734/2460734_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[np.float64(2460734.252751875), np.float64(2460734.2542059002)], [np.float64(2460734.2543177484), np.float64(2460734.255771774)], [np.float64(2460734.255883622), np.float64(2460734.2563310144)], [np.float64(2460734.256666559), np.float64(2460734.256778407)], [np.float64(2460734.256890255), np.float64(2460734.2571139513)], [np.float64(2460734.2582324324), np.float64(2460734.258679825)], [np.float64(2460734.2604693943), np.float64(2460734.261140483)], [np.float64(2460734.262035268), np.float64(2460734.2633774453)], [np.float64(2460734.264160382), np.float64(2460734.2648314703)], [np.float64(2460734.2658381034), np.float64(2460734.2659499515)], [np.float64(2460734.2660617996), np.float64(2460734.2661736477)], [np.float64(2460734.2669565845), np.float64(2460734.2670684326)], [np.float64(2460734.2671802808), np.float64(2460734.2690816987)], [np.float64(2460734.269305395), np.float64(2460734.269529091)], [np.float64(2460734.269976483), np.float64(2460734.270535724)], [np.float64(2460734.27075942), np.float64(2460734.270871268)], [np.float64(2460734.2713186606), np.float64(2460734.271542357)], [np.float64(2460734.271766053), np.float64(2460734.271877901)], [np.float64(2460734.2719897493), np.float64(2460734.27254899)], [np.float64(2460734.272884534), np.float64(2460734.2729963823)], [np.float64(2460734.2733319267), np.float64(2460734.2738911672)], [np.float64(2460734.2740030154), np.float64(2460734.274785952)], [np.float64(2460734.2755688885), np.float64(2460734.2763518253)], [np.float64(2460734.2792598763), np.float64(2460734.2795954207)], [np.float64(2460734.280937598), np.float64(2460734.2818323825)], [np.float64(2460734.282279775), np.float64(2460734.2827271675)], [np.float64(2460734.2829508637), np.float64(2460734.2835101043)], [np.float64(2460734.28496413), np.float64(2460734.285299674)], [np.float64(2460734.2882077247), np.float64(2460734.2888788134)], [np.float64(2460734.2952541555), np.float64(2460734.295701548)], [np.float64(2460734.298162206), np.float64(2460734.298274054)], [np.float64(2460734.2995043835), np.float64(2460734.2997280797)], [np.float64(2460734.302859827), np.float64(2460734.303083523)], [np.float64(2460734.3075574473), np.float64(2460734.3076692955)], [np.float64(2460734.309794409), np.float64(2460734.3099062573)], [np.float64(2460734.3118076753), np.float64(2460734.3122550678)], [np.float64(2460734.3128143083), np.float64(2460734.3129261564)], [np.float64(2460734.3141564857), np.float64(2460734.314603878)], [np.float64(2460734.3147157263), np.float64(2460734.3148275744)], [np.float64(2460734.3154986626), np.float64(2460734.316057903)], [np.float64(2460734.3161697513), np.float64(2460734.3162815995)], [np.float64(2460734.3163934476), np.float64(2460734.3165052957)], [np.float64(2460734.3193014986), np.float64(2460734.3200844354)], [np.float64(2460734.321874005), np.float64(2460734.3223213973)], [np.float64(2460734.322992486), np.float64(2460734.323216182)], [np.float64(2460734.3233280303), np.float64(2460734.3236635746)], [np.float64(2460734.3244465115), np.float64(2460734.3245583596)], [np.float64(2460734.3246702077), np.float64(2460734.324893904)], [np.float64(2460734.327242714), np.float64(2460734.3275782582)], [np.float64(2460734.3276901064), np.float64(2460734.3280256507)], [np.float64(2460734.328249347), np.float64(2460734.3290322837)], [np.float64(2460734.329144132), np.float64(2460734.32925598)], [np.float64(2460734.3297033724), np.float64(2460734.3299270687)], [np.float64(2460734.330374461), np.float64(2460734.331269246)], [np.float64(2460734.3314929423), np.float64(2460734.3318284866)], [np.float64(2460734.3323877268), np.float64(2460734.332723271)], [np.float64(2460734.334736537), np.float64(2460734.3350720815)], [np.float64(2460734.335407626), np.float64(2460734.335631322)], [np.float64(2460734.3359668665), np.float64(2460734.3360787146)], [np.float64(2460734.3361905627), np.float64(2460734.336526107)], [np.float64(2460734.336637955), np.float64(2460734.3367498033)], [np.float64(2460734.3368616514), np.float64(2460734.3370853476)], [np.float64(2460734.3371971957), np.float64(2460734.337756436)], [np.float64(2460734.338651221), np.float64(2460734.3390986132)], [np.float64(2460734.3394341576), np.float64(2460734.3395460057)], [np.float64(2460734.3404407906), np.float64(2460734.340776335)], [np.float64(2460734.340888183), np.float64(2460734.3411118793)], [np.float64(2460734.3413355756), np.float64(2460734.341559272)], [np.float64(2460734.342901449), np.float64(2460734.343125145)], [np.float64(2460734.3435725374), np.float64(2460734.3439080818)], [np.float64(2460734.3453621073), np.float64(2460734.3455858035)], [np.float64(2460734.346256892), np.float64(2460734.3465924365)], [np.float64(2460734.3467042847), np.float64(2460734.346816133)], [np.float64(2460734.347151677), np.float64(2460734.3472635252)], [np.float64(2460734.3483820064), np.float64(2460734.349276791)], [np.float64(2460734.3498360314), np.float64(2460734.3499478796)], [np.float64(2460734.366054007), np.float64(2460734.366165855)], [np.float64(2460734.366389551), np.float64(2460734.3665013993)], [np.float64(2460734.3666132474), np.float64(2460734.3668369437)], [np.float64(2460734.370975324), np.float64(2460734.37119902)], [np.float64(2460734.3720938046), np.float64(2460734.372317501)], [np.float64(2460734.376232185), np.float64(2460734.376455881)], [np.float64(2460734.3772388175), np.float64(2460734.3773506656)], [np.float64(2460734.3774625137), np.float64(2460734.3781336024)], [np.float64(2460734.3782454506), np.float64(2460734.378580995)], [np.float64(2460734.378692843), np.float64(2460734.3789165393)], [np.float64(2460734.379699476), np.float64(2460734.3799231723)], [np.float64(2460734.3821601346), np.float64(2460734.382495679)], [np.float64(2460734.3827193747), np.float64(2460734.382831223)], [np.float64(2460734.3846207927), np.float64(2460734.384732641)], [np.float64(2460734.3854037295), np.float64(2460734.3855155776)], [np.float64(2460734.3856274257), np.float64(2460734.385739274)], [np.float64(2460734.3862985144), np.float64(2460734.3864103626)], [np.float64(2460734.386969603), np.float64(2460734.3871932994)], [np.float64(2460734.3875288437), np.float64(2460734.387640692)], [np.float64(2460734.387864388), np.float64(2460734.387976236)], [np.float64(2460734.3886473244), np.float64(2460734.3889828688)], [np.float64(2460734.389206565), np.float64(2460734.3897658056)], [np.float64(2460734.3916672235), np.float64(2460734.3917790717)], [np.float64(2460734.3927857047), np.float64(2460734.392897553)], [np.float64(2460734.393009401), np.float64(2460734.393121249)], [np.float64(2460734.394463426), np.float64(2460734.3947989703)], [np.float64(2460734.3950226665), np.float64(2460734.3951345147)], [np.float64(2460734.395246363), np.float64(2460734.395358211)], [np.float64(2460734.3971477807), np.float64(2460734.397259629)], [np.float64(2460734.3980425657), np.float64(2460734.398154414)], [np.float64(2460734.3993847426), np.float64(2460734.399720287)], [np.float64(2460734.4019572493), np.float64(2460734.40251649)], [np.float64(2460734.402740186), np.float64(2460734.4029638823)], [np.float64(2460734.4055363885), np.float64(2460734.405871933)], [np.float64(2460734.405983781), np.float64(2460734.406095629)], [np.float64(2460734.406207477), np.float64(2460734.4063193253)], [np.float64(2460734.4064311734), np.float64(2460734.4066548697)], [np.float64(2460734.4073259584), np.float64(2460734.4074378065)], [np.float64(2460734.4134776043), np.float64(2460734.4137013005)], [np.float64(2460734.414372389), np.float64(2460734.4144842373)], [np.float64(2460734.417727832), np.float64(2460734.4179515284)], [np.float64(2460734.421306972), np.float64(2460734.4217543644)], [np.float64(2460734.4234320857), np.float64(2460734.423655782)], [np.float64(2460734.424550567), np.float64(2460734.424774263)], [np.float64(2460734.429807428), np.float64(2460734.4302548203)], [np.float64(2460734.4321562382), np.float64(2460734.4331628713)], [np.float64(2460734.433274719), np.float64(2460734.4336102633)], [np.float64(2460734.4337221114), np.float64(2460734.4339458076)], [np.float64(2460734.434169504), np.float64(2460734.434505048)], [np.float64(2460734.435064289), np.float64(2460734.435176137)], [np.float64(2460734.435287985), np.float64(2460734.4355116813)], [np.float64(2460734.4365183143), np.float64(2460734.4366301624)], [np.float64(2460734.4369657068), np.float64(2460734.437077555)], [np.float64(2460734.437189403), np.float64(2460734.437413099)], [np.float64(2460734.4375249473), np.float64(2460734.4378604917)], [np.float64(2460734.4408803903), np.float64(2460734.441327783)], [np.float64(2460734.441439631), np.float64(2460734.441551479)], [np.float64(2460734.4417751753), np.float64(2460734.4419988715)], [np.float64(2460734.442446264), np.float64(2460734.44266996)], [np.float64(2460734.444906922), np.float64(2460734.4453543145)], [np.float64(2460734.4455780108), np.float64(2460734.445913555)], [np.float64(2460734.446025403), np.float64(2460734.4463609476)], [np.float64(2460734.447926821), np.float64(2460734.4482623655)], [np.float64(2460734.4490453023), np.float64(2460734.4493808467)], [np.float64(2460734.450163783), np.float64(2460734.4503874793)], [np.float64(2460734.4504993274), np.float64(2460734.4506111755)], [np.float64(2460734.45094672), np.float64(2460734.4515059604)], [np.float64(2460734.451953353), np.float64(2460734.452177049)], [np.float64(2460734.4524007454), np.float64(2460734.452848138)], [np.float64(2460734.4532955303), np.float64(2460734.4534073784)], [np.float64(2460734.4535192265), np.float64(2460734.453966619)], [np.float64(2460734.454078467), np.float64(2460734.4543021633)], [np.float64(2460734.4546377077), np.float64(2460734.4551969483)], [np.float64(2460734.4557561884), np.float64(2460734.4559798846)], [np.float64(2460734.456203581), np.float64(2460734.456315429)], [np.float64(2460734.4570983658), np.float64(2460734.457545758)], [np.float64(2460734.458328695), np.float64(2460734.458440543)], [np.float64(2460734.4585523913), np.float64(2460734.4587760875)], [np.float64(2460734.4595590243), np.float64(2460734.4597827205)], [np.float64(2460734.460006417), np.float64(2460734.460118265)], [np.float64(2460734.4604538092), np.float64(2460734.4606775055)], [np.float64(2460734.4613485937), np.float64(2460734.46157229)], [np.float64(2460734.461795986), np.float64(2460734.4621315305)], [np.float64(2460734.462690771), np.float64(2460734.462802619)], [np.float64(2460734.4629144673), np.float64(2460734.463473708)], [np.float64(2460734.463585556), np.float64(2460734.463697404)], [np.float64(2460734.4642566447), np.float64(2460734.464480341)], [np.float64(2460734.4649277334), np.float64(2460734.465598822)], [np.float64(2460734.4658225183), np.float64(2460734.4659343665)], [np.float64(2460734.4660462146), np.float64(2460734.4661580627)], [np.float64(2460734.466940999), np.float64(2460734.467052847)], [np.float64(2460734.4671646953), np.float64(2460734.4672765434)], [np.float64(2460734.4673883915), np.float64(2460734.467723936)], [np.float64(2460734.4681713283), np.float64(2460734.4683950245)], [np.float64(2460734.468618721), np.float64(2460734.468954265)], [np.float64(2460734.4691779613), np.float64(2460734.4695135057)], [np.float64(2460734.4700727463), np.float64(2460734.4701845944)], [np.float64(2460734.470743835), np.float64(2460734.471526772)], [np.float64(2460734.471862316), np.float64(2460734.4719741642)], [np.float64(2460734.474099278), np.float64(2460734.475217759)], [np.float64(2460734.4753296073), np.float64(2460734.4755533035)], [np.float64(2460734.476000696), np.float64(2460734.4764480884)], [np.float64(2460734.477119177), np.float64(2460734.4774547215)], [np.float64(2460734.4775665696), np.float64(2460734.477790266)], [np.float64(2460734.478013962), np.float64(2460734.47812581)], [np.float64(2460734.4789087465), np.float64(2460734.4790205946)], [np.float64(2460734.479467987), np.float64(2460734.4796916833)], [np.float64(2460734.480362772), np.float64(2460734.48047462)], [np.float64(2460734.4810338607), np.float64(2460734.481369405)], [np.float64(2460734.4862907217), np.float64(2460734.486514418)], [np.float64(2460734.486738114), np.float64(2460734.4870736585)], [np.float64(2460734.487744747), np.float64(2460734.4880802915)], [np.float64(2460734.4887513802), np.float64(2460734.4889750765)], [np.float64(2460734.489310621), np.float64(2460734.4896461647)], [np.float64(2460734.4903172534), np.float64(2460734.4906527977)], [np.float64(2460734.4912120383), np.float64(2460734.4915475827)], [np.float64(2460734.4925542157), np.float64(2460734.49288976)], [np.float64(2460734.4932253044), np.float64(2460734.493672697)], [np.float64(2460734.4959096587), np.float64(2460734.496357051)], [np.float64(2460734.5019494565), np.float64(2460734.5020613046)], [np.float64(2460734.5039627226), np.float64(2460734.5040745707)], [np.float64(2460734.504298267), np.float64(2460734.504521963)], [np.float64(2460734.5049693557), np.float64(2460734.505193052)], [np.float64(2460734.5057522925), np.float64(2460734.5058641406)], [np.float64(2460734.506758925), np.float64(2460734.506870773)], [np.float64(2460734.5082129505), np.float64(2460734.5083247987)], [np.float64(2460734.511568394), np.float64(2460734.511680242)], [np.float64(2460734.5151475333), np.float64(2460734.5152593814)], [np.float64(2460734.5154830776), np.float64(2460734.5155949257)], [np.float64(2460734.515818622), np.float64(2460734.516042318)], [np.float64(2460734.519174065), np.float64(2460734.519285913)], [np.float64(2460734.5207399386), np.float64(2460734.5208517867)], [np.float64(2460734.523312445), np.float64(2460734.523424293)], [np.float64(2460734.5238716854), np.float64(2460734.5239835335)], [np.float64(2460734.5256612552), np.float64(2460734.5257731033)], [np.float64(2460734.5267797364), np.float64(2460734.5268915845)], [np.float64(2460734.528233762), np.float64(2460734.52834561)], [np.float64(2460734.5290166982), np.float64(2460734.5291285464)], [np.float64(2460734.534944648), np.float64(2460734.5352801923)], [np.float64(2460734.5362868253), np.float64(2460734.5363986734)], [np.float64(2460734.54489913), np.float64(2460734.545010978)], [np.float64(2460734.54959675), np.float64(2460734.5497085983)], [np.float64(2460734.551833712), np.float64(2460734.55194556)], [np.float64(2460734.5542943706), np.float64(2460734.5544062187)], [np.float64(2460734.556978725), np.float64(2460734.557202421)], [np.float64(2460734.5614526495), np.float64(2460734.5615644976)], [np.float64(2460734.5753218145), np.float64(2460734.575769207)], [np.float64(2460734.5771113844), np.float64(2460734.5772232325)], [np.float64(2460734.5784535618), np.float64(2460734.57856541)], [np.float64(2460734.5794601943), np.float64(2460734.5796838906)], [np.float64(2460734.5808023717), np.float64(2460734.58091422)], [np.float64(2460734.582256397), np.float64(2460734.5823682453)], [np.float64(2460734.5833748784), np.float64(2460734.5834867265)], [np.float64(2460734.592546423), np.float64(2460734.592658271)], [np.float64(2460734.5957900183), np.float64(2460734.5959018664)], [np.float64(2460734.5960137146), np.float64(2460734.5961255627)], [np.float64(2460734.5981388283), np.float64(2460734.5983625245)], [np.float64(2460734.5992573095), np.float64(2460734.599704702)], [np.float64(2460734.612455386), np.float64(2460734.6125672343)], [np.float64(2460734.613014627), np.float64(2460734.613126475)], [np.float64(2460734.613573867), np.float64(2460734.6140212594)], [np.float64(2460734.614468652), np.float64(2460734.6145805)], [np.float64(2460734.6162582217), np.float64(2460734.616705614)], [np.float64(2460734.6201729053), np.float64(2460734.6205084496)], [np.float64(2460734.6267719436), np.float64(2460734.627107488)], [np.float64(2460734.6274430323), np.float64(2460734.6277785767)], [np.float64(2460734.6286733616), np.float64(2460734.6294562984)], [np.float64(2460734.6310221716), np.float64(2460734.631245868)], [np.float64(2460734.6372856656), np.float64(2460734.637733058)], [np.float64(2460734.6409766534), np.float64(2460734.641424046)], [np.float64(2460734.646009818), np.float64(2460734.6461216663)], [np.float64(2460734.6475756913), np.float64(2460734.6476875395)], [np.float64(2460734.6516022235), np.float64(2460734.6517140716)], [np.float64(2460734.655405059), np.float64(2460734.6558524515)], [np.float64(2460734.656411692), np.float64(2460734.6568590845)], [np.float64(2460734.659655287), np.float64(2460734.6602145275)], [np.float64(2460734.66066192), np.float64(2460734.6612211606)], [np.float64(2460734.6621159455), np.float64(2460734.662675186)], [np.float64(2460734.663793667), np.float64(2460734.6643529073)], [np.float64(2460734.6644647554), np.float64(2460734.666030629)]] freq_flags: [[np.float64(49911499.0234375), np.float64(50155639.6484375)], [np.float64(62118530.2734375), np.float64(62850952.1484375)], [np.float64(69931030.2734375), np.float64(70053100.5859375)], [np.float64(74569702.1484375), np.float64(74691772.4609375)], [np.float64(81771850.5859375), np.float64(81893920.8984375)], [np.float64(87387084.9609375), np.float64(108139038.0859375)], [np.float64(109970092.7734375), np.float64(110092163.0859375)], [np.float64(112411499.0234375), np.float64(113754272.4609375)], [np.float64(115707397.4609375), np.float64(116806030.2734375)], [np.float64(124740600.5859375), np.float64(125228881.8359375)], [np.float64(127548217.7734375), np.float64(127670288.0859375)], [np.float64(129989624.0234375), np.float64(130111694.3359375)], [np.float64(136337280.2734375), np.float64(136459350.5859375)], [np.float64(136947631.8359375), np.float64(138168334.9609375)], [np.float64(138290405.2734375), np.float64(138412475.5859375)], [np.float64(138656616.2109375), np.float64(138778686.5234375)], [np.float64(141464233.3984375), np.float64(141586303.7109375)], [np.float64(141708374.0234375), np.float64(141830444.3359375)], [np.float64(142074584.9609375), np.float64(142318725.5859375)], [np.float64(142684936.5234375), np.float64(143661499.0234375)], [np.float64(143783569.3359375), np.float64(144027709.9609375)], [np.float64(144638061.5234375), np.float64(144760131.8359375)], [np.float64(144882202.1484375), np.float64(145004272.4609375)], [np.float64(145492553.7109375), np.float64(145858764.6484375)], [np.float64(146224975.5859375), np.float64(146347045.8984375)], [np.float64(147079467.7734375), np.float64(147323608.3984375)], [np.float64(147445678.7109375), np.float64(147567749.0234375)], [np.float64(148178100.5859375), np.float64(148544311.5234375)], [np.float64(149154663.0859375), np.float64(149276733.3984375)], [np.float64(149520874.0234375), np.float64(150375366.2109375)], [np.float64(151351928.7109375), np.float64(151473999.0234375)], [np.float64(151840209.9609375), np.float64(151962280.2734375)], [np.float64(152938842.7734375), np.float64(153182983.3984375)], [np.float64(153427124.0234375), np.float64(153549194.3359375)], [np.float64(153671264.6484375), np.float64(154403686.5234375)], [np.float64(155014038.0859375), np.float64(155380249.0234375)], [np.float64(155868530.2734375), np.float64(156112670.8984375)], [np.float64(157577514.6484375), np.float64(157699584.9609375)], [np.float64(157821655.2734375), np.float64(157943725.5859375)], [np.float64(158187866.2109375), np.float64(158432006.8359375)], [np.float64(159164428.7109375), np.float64(159286499.0234375)], [np.float64(160140991.2109375), np.float64(160385131.8359375)], [np.float64(161239624.0234375), np.float64(161483764.6484375)], [np.float64(169174194.3359375), np.float64(169296264.6484375)], [np.float64(169906616.2109375), np.float64(170394897.4609375)], [np.float64(170516967.7734375), np.float64(170761108.3984375)], [np.float64(170883178.7109375), np.float64(171005249.0234375)], [np.float64(171249389.6484375), np.float64(171371459.9609375)], [np.float64(175155639.6484375), np.float64(175399780.2734375)], [np.float64(177108764.6484375), np.float64(177230834.9609375)], [np.float64(179306030.2734375), np.float64(179428100.5859375)], [np.float64(179794311.5234375), np.float64(180160522.4609375)], [np.float64(180282592.7734375), np.float64(180404663.0859375)], [np.float64(180526733.3984375), np.float64(180770874.0234375)], [np.float64(181137084.9609375), np.float64(181259155.2734375)], [np.float64(182479858.3984375), np.float64(182601928.7109375)], [np.float64(183212280.2734375), np.float64(183700561.5234375)], [np.float64(184555053.7109375), np.float64(184677124.0234375)], [np.float64(185653686.5234375), np.float64(185775756.8359375)], [np.float64(186386108.3984375), np.float64(187118530.2734375)], [np.float64(187362670.8984375), np.float64(187606811.5234375)], [np.float64(187728881.8359375), np.float64(187850952.1484375)], [np.float64(189559936.5234375), np.float64(189804077.1484375)], [np.float64(189926147.4609375), np.float64(190170288.0859375)], [np.float64(190292358.3984375), np.float64(190658569.3359375)], [np.float64(190902709.9609375), np.float64(191757202.1484375)], [np.float64(192489624.0234375), np.float64(192611694.3359375)], [np.float64(193222045.8984375), np.float64(193466186.5234375)], [np.float64(193588256.8359375), np.float64(193710327.1484375)], [np.float64(193832397.4609375), np.float64(193954467.7734375)], [np.float64(194076538.0859375), np.float64(194320678.7109375)], [np.float64(194442749.0234375), np.float64(194564819.3359375)], [np.float64(194686889.6484375), np.float64(194808959.9609375)], [np.float64(194931030.2734375), np.float64(195053100.5859375)], [np.float64(195663452.1484375), np.float64(195785522.4609375)], [np.float64(195907592.7734375), np.float64(196151733.3984375)], [np.float64(196395874.0234375), np.float64(196640014.6484375)], [np.float64(196762084.9609375), np.float64(198715209.9609375)], [np.float64(199203491.2109375), np.float64(199325561.5234375)], [np.float64(199935913.0859375), np.float64(200546264.6484375)], [np.float64(200790405.2734375), np.float64(201034545.8984375)], [np.float64(201278686.5234375), np.float64(202133178.7109375)], [np.float64(203231811.5234375), np.float64(203475952.1484375)], [np.float64(203964233.3984375), np.float64(204208374.0234375)], [np.float64(204452514.6484375), np.float64(204574584.9609375)], [np.float64(204940795.8984375), np.float64(205062866.2109375)], [np.float64(205184936.5234375), np.float64(205307006.8359375)], [np.float64(206039428.7109375), np.float64(206161499.0234375)], [np.float64(206893920.8984375), np.float64(207015991.2109375)], [np.float64(207138061.5234375), np.float64(207382202.1484375)], [np.float64(207504272.4609375), np.float64(207870483.3984375)], [np.float64(207992553.7109375), np.float64(208114624.0234375)], [np.float64(208480834.9609375), np.float64(208724975.5859375)], [np.float64(208847045.8984375), np.float64(208969116.2109375)], [np.float64(209945678.7109375), np.float64(210067749.0234375)], [np.float64(210433959.9609375), np.float64(210678100.5859375)], [np.float64(211166381.8359375), np.float64(211288452.1484375)], [np.float64(212142944.3359375), np.float64(212265014.6484375)], [np.float64(213119506.8359375), np.float64(213241577.1484375)], [np.float64(213485717.7734375), np.float64(213729858.3984375)], [np.float64(215194702.1484375), np.float64(215316772.4609375)], [np.float64(215682983.3984375), np.float64(215805053.7109375)], [np.float64(216659545.8984375), np.float64(216781616.2109375)], [np.float64(218978881.8359375), np.float64(219100952.1484375)], [np.float64(219833374.0234375), np.float64(219955444.3359375)], [np.float64(220321655.2734375), np.float64(221054077.1484375)], [np.float64(221176147.4609375), np.float64(221298217.7734375)], [np.float64(222763061.5234375), np.float64(222885131.8359375)], [np.float64(223007202.1484375), np.float64(223495483.3984375)], [np.float64(223617553.7109375), np.float64(223861694.3359375)], [np.float64(225692749.0234375), np.float64(225814819.3359375)], [np.float64(226669311.5234375), np.float64(226791381.8359375)], [np.float64(227401733.3984375), np.float64(227523803.7109375)], [np.float64(227645874.0234375), np.float64(227890014.6484375)], [np.float64(229110717.7734375), np.float64(229476928.7109375)], [np.float64(229598999.0234375), np.float64(230331420.8984375)], [np.float64(231063842.7734375), np.float64(231552124.0234375)], [np.float64(232162475.5859375), np.float64(232406616.2109375)], [np.float64(232650756.8359375), np.float64(234359741.2109375)]] ex_ants: [[np.int64[4], Jee], [np.int64[8], Jnn], [np.int64[10], Jee], [np.int64[10], Jnn], [np.int64[16], Jee], [np.int64[17], Jnn], [np.int64[18], Jnn], [np.int64[20], Jee], [np.int64[20], Jnn], [np.int64[21], Jee], [np.int64[22], Jee], [np.int64[22], Jnn], [np.int64[27], Jee], [np.int64[27], Jnn], [np.int64[28], Jee], [np.int64[28], Jnn], [np.int64[29], Jee], [np.int64[29], Jnn], [np.int64[30], Jee], [np.int64[31], Jnn], [np.int64[32], Jnn], [np.int64[33], Jnn], [np.int64[34], Jee], [np.int64[34], Jnn], [np.int64[37], Jnn], [np.int64[40], Jnn], [np.int64[42], Jee], [np.int64[42], Jnn], [np.int64[44], Jee], [np.int64[44], Jnn], [np.int64[45], Jee], [np.int64[45], Jnn], [np.int64[46], Jee], [np.int64[47], Jee], [np.int64[55], Jee], [np.int64[59], Jnn], [np.int64[67], Jnn], [np.int64[70], Jee], [np.int64[70], Jnn], [np.int64[71], Jee], [np.int64[71], Jnn], [np.int64[72], Jnn], [np.int64[75], Jee], [np.int64[75], Jnn], [np.int64[77], Jnn], [np.int64[78], Jee], [np.int64[83], Jnn], [np.int64[85], Jnn], [np.int64[86], Jee], [np.int64[87], Jee], [np.int64[87], Jnn], [np.int64[90], Jnn], [np.int64[91], Jnn], [np.int64[92], Jee], [np.int64[95], Jee], [np.int64[97], Jnn], [np.int64[98], Jnn], [np.int64[99], Jee], [np.int64[99], Jnn], [np.int64[100], Jnn], [np.int64[102], Jnn], [np.int64[104], Jee], [np.int64[104], Jnn], [np.int64[107], Jnn], [np.int64[108], Jnn], [np.int64[109], Jnn], [np.int64[114], Jee], [np.int64[114], Jnn], [np.int64[120], Jee], [np.int64[120], Jnn], [np.int64[121], Jee], [np.int64[121], Jnn], [np.int64[124], Jnn], [np.int64[130], Jnn], [np.int64[133], Jee], [np.int64[134], Jee], [np.int64[135], Jee], [np.int64[136], Jnn], [np.int64[137], Jee], [np.int64[143], Jnn], [np.int64[158], Jnn], [np.int64[161], Jnn], [np.int64[170], Jee], [np.int64[171], Jnn], [np.int64[180], Jee], [np.int64[180], Jnn], [np.int64[184], Jee], [np.int64[188], Jnn], [np.int64[197], Jnn], [np.int64[198], Jnn], [np.int64[199], Jee], [np.int64[199], Jnn], [np.int64[200], Jee], [np.int64[200], Jnn], [np.int64[202], Jnn], [np.int64[204], Jee], [np.int64[204], Jnn], [np.int64[207], Jee], [np.int64[208], Jee], [np.int64[209], Jnn], [np.int64[212], Jnn], [np.int64[213], Jee], [np.int64[216], Jnn], [np.int64[218], Jee], [np.int64[218], Jnn], [np.int64[232], Jee], [np.int64[238], Jnn], [np.int64[239], Jee], [np.int64[246], Jee], [np.int64[250], Jee], [np.int64[251], Jee], [np.int64[253], Jnn], [np.int64[255], Jnn], [np.int64[262], Jee], [np.int64[262], Jnn], [np.int64[268], Jnn], [np.int64[320], Jee], [np.int64[320], Jnn], [np.int64[321], Jee], [np.int64[321], Jnn], [np.int64[322], Jee], [np.int64[322], Jnn], [np.int64[323], Jee], [np.int64[323], Jnn], [np.int64[324], Jee], [np.int64[324], Jnn], [np.int64[325], Jee], [np.int64[325], Jnn], [np.int64[326], Jee], [np.int64[326], Jnn], [np.int64[327], Jee], [np.int64[327], Jnn], [np.int64[328], Jee], [np.int64[328], Jnn], [np.int64[329], Jee], [np.int64[329], Jnn], [np.int64[331], Jee], [np.int64[331], Jnn], [np.int64[332], Jee], [np.int64[332], Jnn], [np.int64[333], Jee], [np.int64[333], Jnn], [np.int64[336], Jee], [np.int64[336], Jnn], [np.int64[340], Jee], [np.int64[340], Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.7.1.dev18+g10e9584 hera_qm: 2.2.1.dev2+ga535e9e hera_filters: 0.1.6.dev9+gf165ec1
hera_notebook_templates: 0.1.dev989+gee0995d pyuvdata: 3.1.3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 40.76 minutes.