Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated October 13, 2024
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from hera_filters import dspec
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 4))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 2))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
AVG_SPECTRUM_FILTER_DELAY = float(os.environ.get("AVG_SPECTRUM_FILTER_DELAY", 250)) # in ns
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
TIME_AVG_DELAY_FILT_SNR_THRESH = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_THRESH", 4.0))
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE", 1.5))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC', 'AVG_SPECTRUM_FILTER_DELAY',
'EIGENVAL_CUTOFF', 'TIME_AVG_DELAY_FILT_SNR_THRESH', 'TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 4.0 WS_Z_THRESH = 2.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1 AVG_SPECTRUM_FILTER_DELAY = 250.0 EIGENVAL_CUTOFF = 1e-12 TIME_AVG_DELAY_FILT_SNR_THRESH = 4.0 TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = 1.5
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1851 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data1/2460735/zen.2460735.25248.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1851 *.sum.smooth.calfits files starting with /mnt/sn1/data1/2460735/zen.2460735.25248.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None, vmin=-5, vmax=5):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=vmin, vmax=vmax, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = avg_func(np.where(flags, np.nan, zscore), axis=0)
ztseries = avg_func(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
def time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Produces SNRs after time-averaging z-scores and delay filtering, accounting for flagging's effect on the filter."""
# figure out high and low band based on FM gap at 100 MHz
flagged_stretches = true_stretches(np.all(flags, axis=0))
FM_gap = [fs for fs in flagged_stretches if fs.start <= np.argmin(np.abs(freqs - 100e6)) < fs.stop][0]
low_band = slice((0 if flagged_stretches[0].start != 0 else flagged_stretches[0].stop), FM_gap.start)
high_band = slice(FM_gap.stop, (len(freqs) if flagged_stretches[-1].stop != len(freqs) else flagged_stretches[-1].start))
filt_SNR = {}
for pol in zscore:
# calculate timeavg_SNR and filter
noise_prediction = 1.0 / np.sum(~flags, axis=0)**.5
timeavg_SNR = np.nanmean(np.where(flags, np.nan, zscore[pol] / noise_prediction), axis=0)
wgts = np.where(np.isfinite(timeavg_SNR), 1, 0)
model = np.zeros_like(timeavg_SNR)
for band in [low_band, high_band]:
model[band], _, _ = dspec.fourier_filter(freqs[band], np.where(np.isfinite(timeavg_SNR[band]), timeavg_SNR[band], 0),
wgts[band], [0], [AVG_SPECTRUM_FILTER_DELAY / 1e9], mode="dpss_solve",
eigenval_cutoff=[EIGENVAL_CUTOFF], suppression_factors=[EIGENVAL_CUTOFF])
filt_SNR[pol] = timeavg_SNR - model
# correct for impact of filter
correction_factors = np.ones_like(wgts) * np.nan
for band in [low_band, high_band]:
X = dspec.dpss_operator(freqs[band], [0], filter_half_widths=[AVG_SPECTRUM_FILTER_DELAY / 1e9], eigenval_cutoff=[EIGENVAL_CUTOFF])[0]
W = wgts[band]
leverage = np.diag(X @ np.linalg.pinv(np.dot(X.T * W, X)) @ (X.T * W))
correction_factors[band] = np.where(leverage > 0, (1 - leverage)**.5, np.nan) # because the underlying data should be gaussian
filt_SNR[pol] /= correction_factors
return filt_SNR
def iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Flag whole channels based on their outlierness after delay-filterd time-averaged zscores.
This is done iteratively since the delay filter can be unduly influenced by large outliers."""
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
while True:
largest_SNR = np.nanmax(list(filt_SNR.values()))
if largest_SNR < thresh:
break
#
cut = np.max([thresh, largest_SNR / dynamic_range])
for pol in filt_SNR:
flags[:, filt_SNR[pol] > cut] = True
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag whole integrations or channels using outliers in median
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmedian, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with median z > {AVG_Z_THRESH}.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
# flag whole integrations or channels using outliers in mean
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
# flag channels based on delay filter
iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
print(f'{np.mean(flags):.3%} of flagging channels that are {TIME_AVG_DELAY_FILT_SNR_THRESH}σ outliers after delay filtering the time average.')
# watershed flagging again
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after another round of watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
34.245% of waterfall flagged to start.
All-NaN slice encountered
Flagging an additional 1 integrations and 5 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more.
Flagging an additional 2 integrations and 2 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 2 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 34.736% of waterfall flagged after flagging whole times and channels with median z > 1.0. 36.500% of waterfall flagged after flagging z > 4.0 outliers.
39.488% of waterfall flagged after watershed flagging on z > 2.0 neighbors of prior flags. Flagging an additional 0 integrations and 0 channels. Flagging 103 channels previously flagged 25.00% or more. Flagging 648 times previously flagged 10.00% or more.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 0 channels. Flagging 3 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more.
Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 53.862% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Mean of empty slice Casting complex values to real discards the imaginary part Casting complex values to real discards the imaginary part
57.456% of flagging channels that are 4.0σ outliers after delay filtering the time average.
58.099% of waterfall flagged after another round of watershed flagging on z > 2.0 neighbors of prior flags.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra(ylim=[-3, 3], flags=flags):
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(ylim)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging(flags=flags):
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1851 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data1/2460735/zen.2460735.25248.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data1/2460735/2460735_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[np.float64(2460735.2524813362), np.float64(2460735.253711665)], [np.float64(2460735.2539353613), np.float64(2460735.2540472094)], [np.float64(2460735.2542709056), np.float64(2460735.2559486274)], [np.float64(2460735.2562841717), np.float64(2460735.2580737416)], [np.float64(2460735.2581855897), np.float64(2460735.258297438)], [np.float64(2460735.258632982), np.float64(2460735.2587448303)], [np.float64(2460735.2593040704), np.float64(2460735.2601988553)], [np.float64(2460735.2603107034), np.float64(2460735.2605343997)], [np.float64(2460735.260646248), np.float64(2460735.261652881)], [np.float64(2460735.261876577), np.float64(2460735.2659031088)], [np.float64(2460735.266014957), np.float64(2460735.266126805)], [np.float64(2460735.2665741974), np.float64(2460735.266909742)], [np.float64(2460735.26702159), np.float64(2460735.268251919)], [np.float64(2460735.2684756154), np.float64(2460735.2685874635)], [np.float64(2460735.2686993117), np.float64(2460735.2694822485)], [np.float64(2460735.2697059447), np.float64(2460735.270041489)], [np.float64(2460735.270265185), np.float64(2460735.2708244254)], [np.float64(2460735.2709362735), np.float64(2460735.271495514)], [np.float64(2460735.2719429065), np.float64(2460735.2720547547)], [np.float64(2460735.272166603), np.float64(2460735.2728376915)], [np.float64(2460735.2730613877), np.float64(2460735.2737324764)], [np.float64(2460735.274291717), np.float64(2460735.2763049826)], [np.float64(2460735.276528679), np.float64(2460735.2771997675)], [np.float64(2460735.2773116156), np.float64(2460735.27764716)], [np.float64(2460735.277870856), np.float64(2460735.2782064006)], [np.float64(2460735.2783182487), np.float64(2460735.2789893374)], [np.float64(2460735.2792130336), np.float64(2460735.279772274)], [np.float64(2460735.2801078185), np.float64(2460735.280443363)], [np.float64(2460735.280667059), np.float64(2460735.2811144516)], [np.float64(2460735.2816736917), np.float64(2460735.282009236)], [np.float64(2460735.282121084), np.float64(2460735.2824566285)], [np.float64(2460735.2825684766), np.float64(2460735.2834632616)], [np.float64(2460735.283686958), np.float64(2460735.2845817427)], [np.float64(2460735.2854765276), np.float64(2460735.28592392)], [np.float64(2460735.2874897933), np.float64(2460735.2878253376)], [np.float64(2460735.288160882), np.float64(2460735.2884964263)], [np.float64(2460735.289279363), np.float64(2460735.2896149075)], [np.float64(2460735.290957085), np.float64(2460735.291068933)], [np.float64(2460735.2922992622), np.float64(2460735.2928585024)], [np.float64(2460735.2931940467), np.float64(2460735.293529591)], [np.float64(2460735.295319161), np.float64(2460735.295542857)], [np.float64(2460735.2956547053), np.float64(2460735.296325794)], [np.float64(2460735.296437642), np.float64(2460735.2971087308)], [np.float64(2460735.2978916676), np.float64(2460735.2990101483)], [np.float64(2460735.2991219964), np.float64(2460735.299569389)], [np.float64(2460735.3009115662), np.float64(2460735.3013589587)], [np.float64(2460735.301694503), np.float64(2460735.3020300474)], [np.float64(2460735.3046025536), np.float64(2460735.30482625)], [np.float64(2460735.3053854904), np.float64(2460735.3057210348)], [np.float64(2460735.30896463), np.float64(2460735.3091883264)], [np.float64(2460735.3124319213), np.float64(2460735.3125437694)], [np.float64(2460735.3137740986), np.float64(2460735.3138859468)], [np.float64(2460735.3158992124), np.float64(2460735.3162347567)], [np.float64(2460735.319254656), np.float64(2460735.319478352)], [np.float64(2460735.3198138964), np.float64(2460735.3199257446)], [np.float64(2460735.323616732), np.float64(2460735.3239522763)], [np.float64(2460735.3276432636), np.float64(2460735.32786696)], [np.float64(2460735.328202504), np.float64(2460735.3283143523)], [np.float64(2460735.328873593), np.float64(2460735.3292091372)], [np.float64(2460735.3312224033), np.float64(2460735.3313342514)], [np.float64(2460735.332452732), np.float64(2460735.3326764284)], [np.float64(2460735.3340186058), np.float64(2460735.334242302)], [np.float64(2460735.3356963275), np.float64(2460735.3358081756)], [np.float64(2460735.3381569856), np.float64(2460735.338380682)], [np.float64(2460735.3463218976), np.float64(2460735.346545594)], [np.float64(2460735.3469929863), np.float64(2460735.3471048344)], [np.float64(2460735.347775923), np.float64(2460735.3479996193)], [np.float64(2460735.35090767), np.float64(2460735.351243214)], [np.float64(2460735.3513550623), np.float64(2460735.3515787586)], [np.float64(2460735.356276379), np.float64(2460735.356388227)], [np.float64(2460735.357283012), np.float64(2460735.3578422526)], [np.float64(2460735.359072582), np.float64(2460735.35918443)], [np.float64(2460735.3656716202), np.float64(2460735.3665664047)], [np.float64(2460735.366901949), np.float64(2460735.367013797)], [np.float64(2460735.370928481), np.float64(2460735.3711521775)], [np.float64(2460735.3852450387), np.float64(2460735.385468735)], [np.float64(2460735.395087672), np.float64(2460735.3954232163)], [np.float64(2460735.400344533), np.float64(2460735.400456381)], [np.float64(2460735.401574862), np.float64(2460735.4019104065)], [np.float64(2460735.402469647), np.float64(2460735.4028051915)], [np.float64(2460735.4072791156), np.float64(2460735.40761466)], [np.float64(2460735.4088449893), np.float64(2460735.4091805336)], [np.float64(2460735.4098516223), np.float64(2460735.4099634704)], [np.float64(2460735.411081951), np.float64(2460735.4116411917)], [np.float64(2460735.4123122804), np.float64(2460735.4126478247)], [np.float64(2460735.4154440276), np.float64(2460735.415779572)], [np.float64(2460735.41589142), np.float64(2460735.4162269644)], [np.float64(2460735.4174572933), np.float64(2460735.4179046857)], [np.float64(2460735.418352078), np.float64(2460735.4189113188)], [np.float64(2460735.4194705593), np.float64(2460735.419917952)], [np.float64(2460735.422266762), np.float64(2460735.422602306)], [np.float64(2460735.426181446), np.float64(2460735.42651699)], [np.float64(2460735.4292013445), np.float64(2460735.4294250407)], [np.float64(2460735.4353529904), np.float64(2460735.4355766866)], [np.float64(2460735.437925497), np.float64(2460735.4382610414)], [np.float64(2460735.43893213), np.float64(2460735.43949137)], [np.float64(2460735.444188991), np.float64(2460735.4445245354)], [np.float64(2460735.446649649), np.float64(2460735.4467614973)], [np.float64(2460735.4495577), np.float64(2460735.4498932445)], [np.float64(2460735.454814561), np.float64(2460735.4549264093)], [np.float64(2460735.4566041306), np.float64(2460735.4572752193)], [np.float64(2460735.4611899033), np.float64(2460735.4615254477)], [np.float64(2460735.4645453463), np.float64(2460735.4646571944)], [np.float64(2460735.464992739), np.float64(2460735.465328283)], [np.float64(2460735.46611122), np.float64(2460735.4664467643)], [np.float64(2460735.4717036253), np.float64(2460735.472374714)], [np.float64(2460735.472486562), np.float64(2460735.47259841)], [np.float64(2460735.472933954), np.float64(2460735.4733813466)], [np.float64(2460735.4764012457), np.float64(2460735.476848638)], [np.float64(2460735.4770723344), np.float64(2460735.477519727)], [np.float64(2460735.478302663), np.float64(2460735.4784145113)], [np.float64(2460735.4795329925), np.float64(2460735.479868537)], [np.float64(2460735.486467575), np.float64(2460735.487138664)], [np.float64(2460735.4876979045), np.float64(2460735.4878097526)], [np.float64(2460735.4993301076), np.float64(2460735.499553804)], [np.float64(2460735.507159475), np.float64(2460735.507383171)], [np.float64(2460735.5078305635), np.float64(2460735.5079424116)], [np.float64(2460735.51040307), np.float64(2460735.5105149182)], [np.float64(2460735.5109623107), np.float64(2460735.511074159)], [np.float64(2460735.511409703), np.float64(2460735.5115215513)], [np.float64(2460735.5117452475), np.float64(2460735.512080792)], [np.float64(2460735.5121926395), np.float64(2460735.512640032)], [np.float64(2460735.512863728), np.float64(2460735.5152125387)], [np.float64(2460735.515436235), np.float64(2460735.515771779)], [np.float64(2460735.5162191717), np.float64(2460735.516554716)], [np.float64(2460735.516666564), np.float64(2460735.5170021085)], [np.float64(2460735.517561349), np.float64(2460735.5177850453)], [np.float64(2460735.5183442854), np.float64(2460735.5184561335)], [np.float64(2460735.521699729), np.float64(2460735.521923425)], [np.float64(2460735.5277395267), np.float64(2460735.527851375)], [np.float64(2460735.529529096), np.float64(2460735.5298646404)], [np.float64(2460735.534226717), np.float64(2460735.534338565)], [np.float64(2460735.534897805), np.float64(2460735.5353451977)], [np.float64(2460735.535568894), np.float64(2460735.5360162864)], [np.float64(2460735.5361281345), np.float64(2460735.5363518307)], [np.float64(2460735.5371347675), np.float64(2460735.5373584637)], [np.float64(2460735.53758216), np.float64(2460735.5388124892)], [np.float64(2460735.5390361855), np.float64(2460735.5392598817)], [np.float64(2460735.539707274), np.float64(2460735.5398191223)], [np.float64(2460735.5401546666), np.float64(2460735.5403783624)], [np.float64(2460735.5404902105), np.float64(2460735.5406020586)], [np.float64(2460735.540825755), np.float64(2460735.5412731473)], [np.float64(2460735.5414968436), np.float64(2460735.541832388)], [np.float64(2460735.5425034766), np.float64(2460735.5426153247)], [np.float64(2460735.5432864134), np.float64(2460735.543621958)], [np.float64(2460735.543845654), np.float64(2460735.5441811983)], [np.float64(2460735.544740439), np.float64(2460735.5450759833)], [np.float64(2460735.545747072), np.float64(2460735.5465300083)], [np.float64(2460735.5467537045), np.float64(2460735.547201097)], [np.float64(2460735.547312945), np.float64(2460735.547984034)], [np.float64(2460735.548095882), np.float64(2460735.5484314263)], [np.float64(2460735.5486551225), np.float64(2460735.5488788188)], [np.float64(2460735.5518987174), np.float64(2460735.5521224136)], [np.float64(2460735.5529053505), np.float64(2460735.553352743)], [np.float64(2460735.557938515), np.float64(2460735.5609584143)], [np.float64(2460735.561629503), np.float64(2460735.5619650474)], [np.float64(2460735.5635309205), np.float64(2460735.563866465)], [np.float64(2460735.5654323385), np.float64(2460735.566998212)], [np.float64(2460735.5675574527), np.float64(2460735.567669301)], [np.float64(2460735.571024744), np.float64(2460735.571136592)], [np.float64(2460735.5718076807), np.float64(2460735.5724787693)], [np.float64(2460735.5750512755), np.float64(2460735.5759460605)], [np.float64(2460735.576281605), np.float64(2460735.576393453)], [np.float64(2460735.5768408454), np.float64(2460735.5770645416)], [np.float64(2460735.577400086), np.float64(2460735.5777356303)], [np.float64(2460735.5778474784), np.float64(2460735.5780711747)], [np.float64(2460735.578294871), np.float64(2460735.578518567)], [np.float64(2460735.5787422634), np.float64(2460735.579189656)], [np.float64(2460735.579301504), np.float64(2460735.5805318328)], [np.float64(2460735.580979225), np.float64(2460735.5812029215)], [np.float64(2460735.5814266177), np.float64(2460735.582545099)], [np.float64(2460735.582656947), np.float64(2460735.582768795)], [np.float64(2460735.5831043394), np.float64(2460735.583439884)], [np.float64(2460735.5839991244), np.float64(2460735.5842228206)], [np.float64(2460735.584446517), np.float64(2460735.584558365)], [np.float64(2460735.584670213), np.float64(2460735.5856768456)], [np.float64(2460735.58601239), np.float64(2460735.586236086)], [np.float64(2460735.586795327), np.float64(2460735.586907175)], [np.float64(2460735.5874664155), np.float64(2460735.5875782636)], [np.float64(2460735.5884730485), np.float64(2460735.5885848966)], [np.float64(2460735.588808593), np.float64(2460735.588920441)], [np.float64(2460735.589144137), np.float64(2460735.5893678335)], [np.float64(2460735.5894796816), np.float64(2460735.589703378)], [np.float64(2460735.589815226), np.float64(2460735.589927074)], [np.float64(2460735.590821859), np.float64(2460735.5910455547)], [np.float64(2460735.591492947), np.float64(2460735.5918284915)], [np.float64(2460735.5919403397), np.float64(2460735.592164036)], [np.float64(2460735.592275884), np.float64(2460735.5927232765)], [np.float64(2460735.593058821), np.float64(2460735.5935062133)], [np.float64(2460735.5936180614), np.float64(2460735.596302416)], [np.float64(2460735.5964142643), np.float64(2460735.5970853525)], [np.float64(2460735.597420897), np.float64(2460735.597532745)], [np.float64(2460735.597756441), np.float64(2460735.5978682893)], [np.float64(2460735.5979801374), np.float64(2460735.5980919856)], [np.float64(2460735.5982038337), np.float64(2460735.6166587714)], [np.float64(2460735.6168824676), np.float64(2460735.618000949)], [np.float64(2460735.618112797), np.float64(2460735.6186720375)], [np.float64(2460735.6188957337), np.float64(2460735.619454974)], [np.float64(2460735.619566822), np.float64(2460735.6199023663)], [np.float64(2460735.6202379107), np.float64(2460735.6207971512)], [np.float64(2460735.6210208475), np.float64(2460735.6212445437)], [np.float64(2460735.621356392), np.float64(2460735.621580088)], [np.float64(2460735.6218037843), np.float64(2460735.622474873)], [np.float64(2460735.622586721), np.float64(2460735.622698569)], [np.float64(2460735.6228104173), np.float64(2460735.623369658)], [np.float64(2460735.623481506), np.float64(2460735.623593354)], [np.float64(2460735.6237052022), np.float64(2460735.6240407466)], [np.float64(2460735.6241525947), np.float64(2460735.624264443)], [np.float64(2460735.624376291), np.float64(2460735.624935531)], [np.float64(2460735.6252710754), np.float64(2460735.6253829235)], [np.float64(2460735.6254947716), np.float64(2460735.625718468)], [np.float64(2460735.625830316), np.float64(2460735.6263895566)], [np.float64(2460735.6265014047), np.float64(2460735.626836949)], [np.float64(2460735.626948797), np.float64(2460735.6270606453)], [np.float64(2460735.627619886), np.float64(2460735.62795543)], [np.float64(2460735.6280672783), np.float64(2460735.6285146708)], [np.float64(2460735.628738367), np.float64(2460735.6291857595)], [np.float64(2460735.6292976076), np.float64(2460735.6307516326)], [np.float64(2460735.631087177), np.float64(2460735.632988595)], [np.float64(2460735.633212291), np.float64(2460735.6333241393)], [np.float64(2460735.6335478355), np.float64(2460735.634218924)], [np.float64(2460735.6345544686), np.float64(2460735.634778165)], [np.float64(2460735.6353374054), np.float64(2460735.6355611016)], [np.float64(2460735.6358966455), np.float64(2460735.636567734)], [np.float64(2460735.6369032785), np.float64(2460735.637238823)], [np.float64(2460735.638245456), np.float64(2460735.6386928484)], [np.float64(2460735.6395876333), np.float64(2460735.6399231777)], [np.float64(2460735.640258722), np.float64(2460735.6408179626)], [np.float64(2460735.641600899), np.float64(2460735.6419364433)], [np.float64(2460735.643502317), np.float64(2460735.6439497094)], [np.float64(2460735.645627431), np.float64(2460735.6459629755)], [np.float64(2460735.6490947222), np.float64(2460735.6493184185)], [np.float64(2460735.6512198364), np.float64(2460735.6514435327)], [np.float64(2460735.6524501657), np.float64(2460735.65278571)], [np.float64(2460735.6567003937), np.float64(2460735.6568122418)], [np.float64(2460735.6638586726), np.float64(2460735.664194217)]] freq_flags: [[np.float64(47103881.8359375), np.float64(47225952.1484375)], [np.float64(47714233.3984375), np.float64(47836303.7109375)], [np.float64(48080444.3359375), np.float64(48202514.6484375)], [np.float64(49423217.7734375), np.float64(49545288.0859375)], [np.float64(49911499.0234375), np.float64(50155639.6484375)], [np.float64(51620483.3984375), np.float64(51986694.3359375)], [np.float64(53817749.0234375), np.float64(53939819.3359375)], [np.float64(62240600.5859375), np.float64(62728881.8359375)], [np.float64(69931030.2734375), np.float64(70053100.5859375)], [np.float64(73104858.3984375), np.float64(73226928.7109375)], [np.float64(80307006.8359375), np.float64(80429077.1484375)], [np.float64(81283569.3359375), np.float64(81405639.6484375)], [np.float64(81649780.2734375), np.float64(81771850.5859375)], [np.float64(82138061.5234375), np.float64(82260131.8359375)], [np.float64(83969116.2109375), np.float64(84091186.5234375)], [np.float64(85433959.9609375), np.float64(85556030.2734375)], [np.float64(87387084.9609375), np.float64(108505249.0234375)], [np.float64(109970092.7734375), np.float64(110092163.0859375)], [np.float64(110214233.3984375), np.float64(110336303.7109375)], [np.float64(112045288.0859375), np.float64(113021850.5859375)], [np.float64(113265991.2109375), np.float64(113388061.5234375)], [np.float64(113632202.1484375), np.float64(113754272.4609375)], [np.float64(114242553.7109375), np.float64(114486694.3359375)], [np.float64(116073608.3984375), np.float64(116195678.7109375)], [np.float64(116439819.3359375), np.float64(116806030.2734375)], [np.float64(119369506.8359375), np.float64(119491577.1484375)], [np.float64(124740600.5859375), np.float64(125228881.8359375)], [np.float64(127548217.7734375), np.float64(127670288.0859375)], [np.float64(129989624.0234375), np.float64(130111694.3359375)], [np.float64(135604858.3984375), np.float64(135726928.7109375)], [np.float64(136337280.2734375), np.float64(136459350.5859375)], [np.float64(136825561.5234375), np.float64(139144897.4609375)], [np.float64(141464233.3984375), np.float64(141586303.7109375)], [np.float64(141708374.0234375), np.float64(141830444.3359375)], [np.float64(141952514.6484375), np.float64(142318725.5859375)], [np.float64(142684936.5234375), np.float64(142807006.8359375)], [np.float64(142929077.1484375), np.float64(143295288.0859375)], [np.float64(143539428.7109375), np.float64(143661499.0234375)], [np.float64(143783569.3359375), np.float64(144027709.9609375)], [np.float64(144638061.5234375), np.float64(145004272.4609375)], [np.float64(145492553.7109375), np.float64(146102905.2734375)], [np.float64(146224975.5859375), np.float64(146347045.8984375)], [np.float64(147079467.7734375), np.float64(147323608.3984375)], [np.float64(147445678.7109375), np.float64(147567749.0234375)], [np.float64(148178100.5859375), np.float64(148544311.5234375)], [np.float64(148910522.4609375), np.float64(149276733.3984375)], [np.float64(149887084.9609375), np.float64(150009155.2734375)], [np.float64(151840209.9609375), np.float64(151962280.2734375)], [np.float64(153427124.0234375), np.float64(153549194.3359375)], [np.float64(153671264.6484375), np.float64(154037475.5859375)], [np.float64(154159545.8984375), np.float64(154403686.5234375)], [np.float64(155014038.0859375), np.float64(155380249.0234375)], [np.float64(155868530.2734375), np.float64(156112670.8984375)], [np.float64(157577514.6484375), np.float64(157699584.9609375)], [np.float64(157943725.5859375), np.float64(158065795.8984375)], [np.float64(158187866.2109375), np.float64(158432006.8359375)], [np.float64(159164428.7109375), np.float64(159286499.0234375)], [np.float64(160140991.2109375), np.float64(160385131.8359375)], [np.float64(161239624.0234375), np.float64(161605834.9609375)], [np.float64(166488647.4609375), np.float64(167465209.9609375)], [np.float64(169906616.2109375), np.float64(170150756.8359375)], [np.float64(170272827.1484375), np.float64(170394897.4609375)], [np.float64(170516967.7734375), np.float64(170639038.0859375)], [np.float64(170883178.7109375), np.float64(171005249.0234375)], [np.float64(171249389.6484375), np.float64(171371459.9609375)], [np.float64(175033569.3359375), np.float64(175399780.2734375)], [np.float64(176620483.3984375), np.float64(177719116.2109375)], [np.float64(179183959.9609375), np.float64(179550170.8984375)], [np.float64(180160522.4609375), np.float64(180404663.0859375)], [np.float64(181137084.9609375), np.float64(181381225.5859375)], [np.float64(181503295.8984375), np.float64(181747436.5234375)], [np.float64(182357788.0859375), np.float64(182723999.0234375)], [np.float64(183212280.2734375), np.float64(183700561.5234375)], [np.float64(184188842.7734375), np.float64(184310913.0859375)], [np.float64(184555053.7109375), np.float64(184921264.6484375)], [np.float64(185409545.8984375), np.float64(185775756.8359375)], [np.float64(186141967.7734375), np.float64(186264038.0859375)], [np.float64(186386108.3984375), np.float64(186996459.9609375)], [np.float64(187362670.8984375), np.float64(187850952.1484375)], [np.float64(187973022.4609375), np.float64(188095092.7734375)], [np.float64(188217163.0859375), np.float64(192001342.7734375)], [np.float64(192123413.0859375), np.float64(198593139.6484375)], [np.float64(198715209.9609375), np.float64(199569702.1484375)], [np.float64(199813842.7734375), np.float64(201156616.2109375)], [np.float64(201400756.8359375), np.float64(201889038.0859375)], [np.float64(202255249.0234375), np.float64(202621459.9609375)], [np.float64(203231811.5234375), np.float64(203598022.4609375)], [np.float64(203964233.3984375), np.float64(204330444.3359375)], [np.float64(204696655.2734375), np.float64(204818725.5859375)], [np.float64(204940795.8984375), np.float64(205307006.8359375)], [np.float64(205795288.0859375), np.float64(206161499.0234375)], [np.float64(206649780.2734375), np.float64(208969116.2109375)], [np.float64(209457397.4609375), np.float64(209823608.3984375)], [np.float64(209945678.7109375), np.float64(210067749.0234375)], [np.float64(210433959.9609375), np.float64(211776733.3984375)], [np.float64(212020874.0234375), np.float64(212265014.6484375)], [np.float64(212387084.9609375), np.float64(212509155.2734375)], [np.float64(213485717.7734375), np.float64(213729858.3984375)], [np.float64(214706420.8984375), np.float64(214828491.2109375)], [np.float64(214950561.5234375), np.float64(215072631.8359375)], [np.float64(215194702.1484375), np.float64(215316772.4609375)], [np.float64(215682983.3984375), np.float64(215927124.0234375)], [np.float64(216659545.8984375), np.float64(216781616.2109375)], [np.float64(218856811.5234375), np.float64(219100952.1484375)], [np.float64(219589233.3984375), np.float64(220077514.6484375)], [np.float64(220565795.8984375), np.float64(220809936.5234375)], [np.float64(221176147.4609375), np.float64(221298217.7734375)], [np.float64(222396850.5859375), np.float64(224105834.9609375)], [np.float64(225692749.0234375), np.float64(225936889.6484375)], [np.float64(226425170.8984375), np.float64(226791381.8359375)], [np.float64(227279663.0859375), np.float64(228012084.9609375)], [np.float64(228500366.2109375), np.float64(228744506.8359375)], [np.float64(229110717.7734375), np.float64(229476928.7109375)], [np.float64(229965209.9609375), np.float64(230453491.2109375)], [np.float64(231063842.7734375), np.float64(231185913.0859375)], [np.float64(233261108.3984375), np.float64(233383178.7109375)], [np.float64(233993530.2734375), np.float64(234359741.2109375)]] ex_ants: [[np.int64[3], Jee], [np.int64[3], Jnn], [np.int64[4], Jee], [np.int64[4], Jnn], [np.int64[5], Jee], [np.int64[5], Jnn], [np.int64[7], Jee], [np.int64[7], Jnn], [np.int64[8], Jee], [np.int64[8], Jnn], [np.int64[9], Jee], [np.int64[9], Jnn], [np.int64[10], Jee], [np.int64[10], Jnn], [np.int64[15], Jee], [np.int64[16], Jee], [np.int64[17], Jnn], [np.int64[18], Jee], [np.int64[18], Jnn], [np.int64[19], Jee], [np.int64[19], Jnn], [np.int64[20], Jee], [np.int64[20], Jnn], [np.int64[21], Jee], [np.int64[21], Jnn], [np.int64[22], Jee], [np.int64[22], Jnn], [np.int64[27], Jee], [np.int64[27], Jnn], [np.int64[28], Jee], [np.int64[28], Jnn], [np.int64[29], Jee], [np.int64[29], Jnn], [np.int64[30], Jee], [np.int64[30], Jnn], [np.int64[31], Jnn], [np.int64[32], Jee], [np.int64[32], Jnn], [np.int64[33], Jee], [np.int64[33], Jnn], [np.int64[34], Jee], [np.int64[34], Jnn], [np.int64[36], Jee], [np.int64[36], Jnn], [np.int64[37], Jee], [np.int64[37], Jnn], [np.int64[40], Jee], [np.int64[40], Jnn], [np.int64[41], Jee], [np.int64[42], Jee], [np.int64[42], Jnn], [np.int64[43], Jee], [np.int64[44], Jee], [np.int64[44], Jnn], [np.int64[45], Jee], [np.int64[45], Jnn], [np.int64[46], Jee], [np.int64[46], Jnn], [np.int64[49], Jee], [np.int64[49], Jnn], [np.int64[50], Jnn], [np.int64[51], Jee], [np.int64[51], Jnn], [np.int64[52], Jee], [np.int64[52], Jnn], [np.int64[53], Jnn], [np.int64[55], Jee], [np.int64[55], Jnn], [np.int64[56], Jee], [np.int64[57], Jnn], [np.int64[58], Jee], [np.int64[59], Jnn], [np.int64[60], Jee], [np.int64[60], Jnn], [np.int64[65], Jee], [np.int64[65], Jnn], [np.int64[66], Jee], [np.int64[66], Jnn], [np.int64[67], Jnn], [np.int64[68], Jnn], [np.int64[69], Jee], [np.int64[69], Jnn], [np.int64[70], Jee], [np.int64[70], Jnn], [np.int64[71], Jee], [np.int64[71], Jnn], [np.int64[72], Jnn], [np.int64[73], Jee], [np.int64[73], Jnn], [np.int64[75], Jee], [np.int64[75], Jnn], [np.int64[77], Jnn], [np.int64[78], Jee], [np.int64[82], Jee], [np.int64[82], Jnn], [np.int64[83], Jnn], [np.int64[84], Jee], [np.int64[84], Jnn], [np.int64[85], Jee], [np.int64[85], Jnn], [np.int64[86], Jee], [np.int64[86], Jnn], [np.int64[87], Jee], [np.int64[88], Jee], [np.int64[88], Jnn], [np.int64[89], Jee], [np.int64[89], Jnn], [np.int64[90], Jee], [np.int64[90], Jnn], [np.int64[91], Jee], [np.int64[91], Jnn], [np.int64[92], Jee], [np.int64[93], Jnn], [np.int64[94], Jee], [np.int64[97], Jnn], [np.int64[98], Jnn], [np.int64[99], Jee], [np.int64[99], Jnn], [np.int64[100], Jee], [np.int64[100], Jnn], [np.int64[101], Jnn], [np.int64[102], Jee], [np.int64[102], Jnn], [np.int64[103], Jee], [np.int64[104], Jee], [np.int64[104], Jnn], [np.int64[105], Jee], [np.int64[105], Jnn], [np.int64[106], Jee], [np.int64[106], Jnn], [np.int64[107], Jee], [np.int64[107], Jnn], [np.int64[108], Jee], [np.int64[108], Jnn], [np.int64[109], Jee], [np.int64[109], Jnn], [np.int64[110], Jee], [np.int64[111], Jee], [np.int64[112], Jee], [np.int64[112], Jnn], [np.int64[116], Jee], [np.int64[116], Jnn], [np.int64[117], Jee], [np.int64[117], Jnn], [np.int64[118], Jee], [np.int64[118], Jnn], [np.int64[119], Jnn], [np.int64[120], Jee], [np.int64[120], Jnn], [np.int64[121], Jee], [np.int64[121], Jnn], [np.int64[122], Jnn], [np.int64[123], Jee], [np.int64[123], Jnn], [np.int64[124], Jee], [np.int64[124], Jnn], [np.int64[125], Jee], [np.int64[125], Jnn], [np.int64[126], Jnn], [np.int64[129], Jnn], [np.int64[130], Jnn], [np.int64[131], Jnn], [np.int64[135], Jee], [np.int64[136], Jee], [np.int64[136], Jnn], [np.int64[137], Jee], [np.int64[138], Jee], [np.int64[138], Jnn], [np.int64[140], Jee], [np.int64[140], Jnn], [np.int64[141], Jee], [np.int64[141], Jnn], [np.int64[142], Jee], [np.int64[142], Jnn], [np.int64[143], Jee], [np.int64[143], Jnn], [np.int64[144], Jnn], [np.int64[145], Jee], [np.int64[147], Jnn], [np.int64[148], Jee], [np.int64[148], Jnn], [np.int64[149], Jee], [np.int64[149], Jnn], [np.int64[155], Jnn], [np.int64[156], Jee], [np.int64[158], Jnn], [np.int64[160], Jee], [np.int64[160], Jnn], [np.int64[161], Jee], [np.int64[161], Jnn], [np.int64[164], Jnn], [np.int64[165], Jee], [np.int64[165], Jnn], [np.int64[166], Jee], [np.int64[166], Jnn], [np.int64[167], Jee], [np.int64[168], Jnn], [np.int64[169], Jnn], [np.int64[170], Jee], [np.int64[171], Jnn], [np.int64[176], Jee], [np.int64[176], Jnn], [np.int64[177], Jee], [np.int64[177], Jnn], [np.int64[178], Jee], [np.int64[178], Jnn], [np.int64[180], Jee], [np.int64[180], Jnn], [np.int64[181], Jee], [np.int64[182], Jnn], [np.int64[184], Jnn], [np.int64[185], Jnn], [np.int64[188], Jnn], [np.int64[190], Jnn], [np.int64[191], Jnn], [np.int64[197], Jnn], [np.int64[199], Jee], [np.int64[199], Jnn], [np.int64[200], Jee], [np.int64[200], Jnn], [np.int64[202], Jnn], [np.int64[204], Jee], [np.int64[208], Jee], [np.int64[208], Jnn], [np.int64[209], Jee], [np.int64[209], Jnn], [np.int64[210], Jnn], [np.int64[212], Jnn], [np.int64[213], Jee], [np.int64[215], Jnn], [np.int64[216], Jnn], [np.int64[218], Jee], [np.int64[218], Jnn], [np.int64[232], Jee], [np.int64[235], Jee], [np.int64[238], Jnn], [np.int64[239], Jee], [np.int64[246], Jee], [np.int64[250], Jee], [np.int64[251], Jee], [np.int64[253], Jnn], [np.int64[255], Jnn], [np.int64[262], Jee], [np.int64[262], Jnn], [np.int64[266], Jnn], [np.int64[267], Jee], [np.int64[268], Jnn], [np.int64[320], Jee], [np.int64[320], Jnn], [np.int64[321], Jee], [np.int64[321], Jnn], [np.int64[322], Jee], [np.int64[322], Jnn], [np.int64[323], Jee], [np.int64[323], Jnn], [np.int64[324], Jee], [np.int64[324], Jnn], [np.int64[325], Jee], [np.int64[325], Jnn], [np.int64[326], Jee], [np.int64[326], Jnn], [np.int64[327], Jee], [np.int64[327], Jnn], [np.int64[328], Jee], [np.int64[328], Jnn], [np.int64[329], Jee], [np.int64[329], Jnn], [np.int64[331], Jee], [np.int64[331], Jnn], [np.int64[332], Jee], [np.int64[332], Jnn], [np.int64[333], Jee], [np.int64[333], Jnn], [np.int64[336], Jee], [np.int64[336], Jnn], [np.int64[340], Jee], [np.int64[340], Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.7.1.dev18+g10e9584 hera_qm: 2.2.1.dev2+ga535e9e hera_filters: 0.1.6.dev9+gf165ec1
hera_notebook_templates: 0.1.dev989+gee0995d pyuvdata: 3.1.3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 41.53 minutes.