Second Round of Full Day RFI Flagging¶

by Josh Dillon, last updated October 13, 2024

This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_calibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal files, which are updated in place, and to write down as new UVFlag waterfall-type .h5 files.

Here's a set of links to skip to particular figures and tables:

• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶

• Figure 2: Histogram of z-scores¶

• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶

• Figure 4: Spectra of Time-Averaged z-Scores¶

• Figure 5: Summary of Flags Before and After Round 2 Flagging¶

In [1]:
import time
tstart = time.time()
In [2]:
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin  # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from hera_filters import dspec

from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore')  # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
In [3]:
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')

# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX =  os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)

# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)

# build out yaml file
if OUT_YAML_DIR is None:
    OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)    

# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 4))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 2))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
AVG_SPECTRUM_FILTER_DELAY = float(os.environ.get("AVG_SPECTRUM_FILTER_DELAY", 250)) # in ns
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
TIME_AVG_DELAY_FILT_SNR_THRESH = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_THRESH", 4.0))
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE", 1.5))

for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC', 'AVG_SPECTRUM_FILTER_DELAY',
               'EIGENVAL_CUTOFF', 'TIME_AVG_DELAY_FILT_SNR_THRESH', 'TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE']:
    print(f'{setting} = {eval(setting)}')
Z_THRESH = 4.0
WS_Z_THRESH = 2.0
AVG_Z_THRESH = 1.0
MAX_FREQ_FLAG_FRAC = 0.25
MAX_TIME_FLAG_FRAC = 0.1
AVG_SPECTRUM_FILTER_DELAY = 250.0
EIGENVAL_CUTOFF = 1e-12
TIME_AVG_DELAY_FILT_SNR_THRESH = 4.0
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = 1.5

Load z-scores¶

In [4]:
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1850 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460762/zen.2460762.25260.sum.red_avg_zscore.h5.
In [5]:
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1850 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460762/zen.2460762.25260.sum.smooth.calfits.
In [6]:
assert len(zscore_files) == len(cal_files)
In [7]:
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
In [8]:
freqs = uvf.freq_array
times = uvf.time_array
In [9]:
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
In [10]:
def plot_max_z_score(zscore, flags=None, vmin=-5, vmax=5):
    if flags is None:
        flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
    plt.figure(figsize=(14,10), dpi=100)
    plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto', 
               cmap='coolwarm', interpolation='none', vmin=vmin, vmax=vmax, extent=extent)
    plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
    plt.xlabel('Frequency (MHz)')
    plt.ylabel(f'JD - {int(times[0])}')
    plt.tight_layout()

Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶

Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.

In [11]:
plot_max_z_score(zscore)
All-NaN axis encountered
No description has been provided for this image
In [12]:
def plot_histogram():
    plt.figure(figsize=(14,4), dpi=100)
    bins = np.arange(-50, 100, .1)
    hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
    hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
    plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
    plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
    plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
    plt.yscale('log')
    all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]]) 
    plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
    plt.xlim([-50, 100])
    plt.legend()
    plt.xlabel('z-score')
    plt.ylabel('Density')
    plt.tight_layout()

Figure 2: Histogram of z-scores¶

Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.

In [13]:
plot_histogram()
No description has been provided for this image

Perform flagging¶

In [14]:
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True):
    '''Flag whole integrations or channels based on average z-score. This is done
    iteratively to prevent bad times affecting channel averages or vice versa.'''
    flagged_chan_count = 0
    flagged_int_count = 0
    while True:
        zspec = avg_func(np.where(flags, np.nan, zscore), axis=0)
        ztseries = avg_func(np.where(flags, np.nan, zscore), axis=1)

        if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
            break

        if np.nanmax(zspec) >= np.nanmax(ztseries):
            flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
            flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
        else:
            flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
            flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True

    if verbose:
        print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')

def impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True):
    '''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
    unflagged_times = ~np.all(flags, axis=1)
    frequently_flagged_chans =  np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
    if verbose:
        print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')        
    flags[:, frequently_flagged_chans] = True 
        
def impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True):
    '''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
    unflagged_chans = ~np.all(flags, axis=0)
    frequently_flagged_times =  np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
    if verbose:
        print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
    flags[frequently_flagged_times, :] = True

def time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
    """Produces SNRs after time-averaging z-scores and delay filtering, accounting for flagging's effect on the filter."""
    # figure out high and low band based on FM gap at 100 MHz
    flagged_stretches = true_stretches(np.all(flags, axis=0))
    FM_gap = [fs for fs in flagged_stretches if fs.start <= np.argmin(np.abs(freqs - 100e6)) < fs.stop][0]
    low_band = slice((0 if flagged_stretches[0].start != 0 else flagged_stretches[0].stop), FM_gap.start)
    high_band = slice(FM_gap.stop, (len(freqs) if flagged_stretches[-1].stop != len(freqs) else flagged_stretches[-1].start))
    
    filt_SNR = {}
    for pol in zscore:
        # calculate timeavg_SNR and filter
        noise_prediction = 1.0 / np.sum(~flags, axis=0)**.5
        timeavg_SNR = np.nanmean(np.where(flags, np.nan, zscore[pol] / noise_prediction), axis=0) 
        wgts = np.where(np.isfinite(timeavg_SNR), 1, 0)
        model = np.zeros_like(timeavg_SNR)
        for band in [low_band, high_band]:
            model[band], _, _ = dspec.fourier_filter(freqs[band], np.where(np.isfinite(timeavg_SNR[band]), timeavg_SNR[band], 0),
                                                     wgts[band], [0], [AVG_SPECTRUM_FILTER_DELAY / 1e9], mode="dpss_solve", 
                                                     eigenval_cutoff=[EIGENVAL_CUTOFF], suppression_factors=[EIGENVAL_CUTOFF])
        filt_SNR[pol] = timeavg_SNR - model

        # correct for impact of filter
        correction_factors = np.ones_like(wgts) * np.nan
        for band in [low_band, high_band]:
            X = dspec.dpss_operator(freqs[band], [0], filter_half_widths=[AVG_SPECTRUM_FILTER_DELAY / 1e9], eigenval_cutoff=[EIGENVAL_CUTOFF])[0]
            W = wgts[band]
            leverage = np.diag(X @ np.linalg.pinv(np.dot(X.T * W, X)) @ (X.T * W))
            correction_factors[band] = np.where(leverage > 0, (1 - leverage)**.5, np.nan) # because the underlying data should be gaussian
        filt_SNR[pol] /= correction_factors
    
    return filt_SNR

def iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
                                                       filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
    """Flag whole channels based on their outlierness after delay-filterd time-averaged zscores.
    This is done iteratively since the delay filter can be unduly influenced by large outliers."""
    filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
    while True:
        largest_SNR = np.nanmax(list(filt_SNR.values()))
        if largest_SNR < thresh:
            break
        # 
        cut = np.max([thresh, largest_SNR / dynamic_range])
        for pol in filt_SNR:
            flags[:, filt_SNR[pol] > cut] = True
        filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
In [15]:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')

# flag whole integrations or channels using outliers in median
while True:
    nflags = np.sum(flags)
    for pol in ['ee', 'nn']:    
        iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmedian, avg_z_thresh=AVG_Z_THRESH, verbose=True)
        impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
        impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
    if np.sum(flags) == nflags:
        break  
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with median z > {AVG_Z_THRESH}.')

# flag largest outliers
for pol in ['ee', 'nn']:
    flags |= (zscore[pol] > Z_THRESH) 
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
    
# watershed flagging
while True:
    nflags = np.sum(flags)
    for pol in ['ee', 'nn']:
        flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
    if np.sum(flags) == nflags:
        break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
        
# flag whole integrations or channels using outliers in mean
while True:
    nflags = np.sum(flags)
    for pol in ['ee', 'nn']:    
        iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True)
        impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
        impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
    if np.sum(flags) == nflags:
        break  
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')

# flag channels based on delay filter
iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
                                                   filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
print(f'{np.mean(flags):.3%} of flagging channels that are {TIME_AVG_DELAY_FILT_SNR_THRESH}σ outliers after delay filtering the time average.')

# watershed flagging again
while True:
    nflags = np.sum(flags)
    for pol in ['ee', 'nn']:
        flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
    if np.sum(flags) == nflags:
        break
print(f'{np.mean(flags):.3%} of waterfall flagged after another round of watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
44.996% of waterfall flagged to start.
All-NaN slice encountered
	Flagging an additional 19 integrations and 11 channels.
	Flagging 0 channels previously flagged 25.00% or more.
	Flagging 1 times previously flagged 10.00% or more.
	Flagging an additional 0 integrations and 7 channels.
	Flagging 0 channels previously flagged 25.00% or more.
	Flagging 0 times previously flagged 10.00% or more.
	Flagging an additional 0 integrations and 0 channels.
	Flagging 0 channels previously flagged 25.00% or more.
	Flagging 0 times previously flagged 10.00% or more.
	Flagging an additional 0 integrations and 0 channels.
	Flagging 0 channels previously flagged 25.00% or more.
	Flagging 0 times previously flagged 10.00% or more.
46.154% of waterfall flagged after flagging whole times and channels with median z > 1.0.
48.618% of waterfall flagged after flagging z > 4.0 outliers.
50.234% of waterfall flagged after watershed flagging on z > 2.0 neighbors of prior flags.
	Flagging an additional 0 integrations and 0 channels.
	Flagging 140 channels previously flagged 25.00% or more.
	Flagging 298 times previously flagged 10.00% or more.
Mean of empty slice
Mean of empty slice
	Flagging an additional 0 integrations and 0 channels.
	Flagging 1 channels previously flagged 25.00% or more.
	Flagging 0 times previously flagged 10.00% or more.
	Flagging an additional 0 integrations and 0 channels.
	Flagging 0 channels previously flagged 25.00% or more.
	Flagging 0 times previously flagged 10.00% or more.
	Flagging an additional 0 integrations and 0 channels.
	Flagging 0 channels previously flagged 25.00% or more.
	Flagging 0 times previously flagged 10.00% or more.
59.237% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Mean of empty slice
Casting complex values to real discards the imaginary part
Casting complex values to real discards the imaginary part
62.808% of flagging channels that are 4.0σ outliers after delay filtering the time average.
63.193% of waterfall flagged after another round of watershed flagging on z > 2.0 neighbors of prior flags.

Show results of flagging¶

Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶

The same as Figure 1, but after the flagging performed in this notebook.

In [16]:
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
No description has been provided for this image
In [17]:
def zscore_spectra(ylim=[-3, 3], flags=flags):
    fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
    for ax, pol in zip(axes, ['ee', 'nn']):

        ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
        ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
        ax.legend(loc='lower right')
        ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
        ax.set_ylim(ylim)
    axes[1].set_xlabel('Frequency (MHz)')
    plt.tight_layout()

Figure 4: Spectra of Time-Averaged z-Scores¶

The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.

In [18]:
zscore_spectra()
Mean of empty slice
Mean of empty slice
No description has been provided for this image
In [19]:
def summarize_flagging(flags=flags):
    plt.figure(figsize=(14,10), dpi=100)
    cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
    plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)), 
               aspect='auto', cmap=cmap, interpolation='none', extent=extent)
    plt.clim([-.5, 2.5])
    cbar = plt.colorbar(location='top', aspect=40, pad=.02)
    cbar.set_ticks([0, 1, 2])
    cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
    plt.xlabel('Frequency (MHz)')
    plt.ylabel(f'JD - {int(times[0])}')
    plt.tight_layout()

Figure 5: Summary of Flags Before and After Round 2 Flagging¶

This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.

In [20]:
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
No description has been provided for this image

Save results¶

In [21]:
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
In [22]:
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")    
        
        # update cal_file
        uvc = UVCal()
        uvc.read(cal_file, use_future_array_shapes=True)
        uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
        uvc.history += 'Modified ' + add_to_history
        uvc.write_calfits(cal_file, clobber=True)
        
        # keep track of flagged antennas
        for antnum in uvc.ant_array:
            for antpol in ['Jee', 'Jnn']:
                if np.all(uvc.get_flags(antnum, antpol)):
                    if (antnum, antpol) not in ever_unflagged_ants:
                        always_flagged_ants.add((antnum, antpol))
                else:
                    ever_unflagged_ants.add((antnum, antpol))
                    always_flagged_ants.discard((antnum, antpol))
                

        # Create new flag object
        uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
        uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
        uvf_out.history += 'Produced ' + add_to_history
        uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
        
        # increment time index
        tind += len(uvc.time_array)

print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1850 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460762/zen.2460762.25260.sum.flag_waterfall_round_2.h5.
In [23]:
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = sorted(always_flagged_ants)

dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[times[flag_stretch][0] - dt / 2, times[flag_stretch][-1] + dt / 2] 
                                  for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[freqs[flag_stretch][0] - df / 2, freqs[flag_stretch][-1] + df / 2] 
                                         for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')

print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
    outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460762/2460762_aposteriori_flags.yaml
------------------------------------------------------------------------------
JD_flags: [[np.float64(2460762.252484922), np.float64(2460762.3799917633)], [np.float64(2460762.3801036114), np.float64(2460762.380551004)], [np.float64(2460762.3811102444), np.float64(2460762.381557637)], [np.float64(2460762.3818931812), np.float64(2460762.3822287256)], [np.float64(2460762.3826761176), np.float64(2460762.3836827506)], [np.float64(2460762.3845775356), np.float64(2460762.385024928)], [np.float64(2460762.3853604724), np.float64(2460762.3856960167)], [np.float64(2460762.3862552573), np.float64(2460762.3865908016)], [np.float64(2460762.3867026498), np.float64(2460762.387038194)], [np.float64(2460762.3872618903), np.float64(2460762.3875974347)], [np.float64(2460762.3878211305), np.float64(2460762.388492219)], [np.float64(2460762.3886040673), np.float64(2460762.3889396116)], [np.float64(2460762.389498852), np.float64(2460762.3898343965)], [np.float64(2460762.390393637), np.float64(2460762.3907291815)], [np.float64(2460762.391288422), np.float64(2460762.3916239664)], [np.float64(2460762.3919595107), np.float64(2460762.392183207)], [np.float64(2460762.3928542957), np.float64(2460762.39318984)], [np.float64(2460762.3934135363), np.float64(2460762.39374908)], [np.float64(2460762.3941964726), np.float64(2460762.394532017)], [np.float64(2460762.3949794094), np.float64(2460762.39553865)], [np.float64(2460762.3959860425), np.float64(2460762.3962097387)], [np.float64(2460762.396545283), np.float64(2460762.396657131)], [np.float64(2460762.3967689793), np.float64(2460762.3968808274)], [np.float64(2460762.3969926755), np.float64(2460762.3971045236)], [np.float64(2460762.3981111567), np.float64(2460762.398334853)], [np.float64(2460762.3988940935), np.float64(2460762.3990059416)], [np.float64(2460762.39967703), np.float64(2460762.4003481185)], [np.float64(2460762.4012429034), np.float64(2460762.401690296)], [np.float64(2460762.401802144), np.float64(2460762.401913992)], [np.float64(2460762.402696929), np.float64(2460762.402920625)], [np.float64(2460762.4033680176), np.float64(2460762.403591714)], [np.float64(2460762.4095196635), np.float64(2460762.40974336)], [np.float64(2460762.4103026), np.float64(2460762.4106381442)], [np.float64(2460762.412204018), np.float64(2460762.412427714)], [np.float64(2460762.4129869547), np.float64(2460762.413434347)], [np.float64(2460762.415112069), np.float64(2460762.415223917)], [np.float64(2460762.417460879), np.float64(2460762.417796423)], [np.float64(2460762.420480778), np.float64(2460762.420592626)], [np.float64(2460762.4210400186), np.float64(2460762.421263715)], [np.float64(2460762.4243954616), np.float64(2460762.424619158)], [np.float64(2460762.4252902465), np.float64(2460762.4255139427)], [np.float64(2460762.42741536), np.float64(2460762.4276390565)], [np.float64(2460762.4277509046), np.float64(2460762.4278627527)], [np.float64(2460762.428086449), np.float64(2460762.428310145)], [np.float64(2460762.4288693857), np.float64(2460762.428981234)], [np.float64(2460762.429876019), np.float64(2460762.429987867)], [np.float64(2460762.4306589556), np.float64(2460762.430882652)], [np.float64(2460762.4315537405), np.float64(2460762.4316655886)], [np.float64(2460762.4365869053), np.float64(2460762.4366987534)], [np.float64(2460762.438823867), np.float64(2460762.4389357152)], [np.float64(2460762.439718652), np.float64(2460762.4399423483)], [np.float64(2460762.447995412), np.float64(2460762.4481072603)], [np.float64(2460762.453923362), np.float64(2460762.454147058)], [np.float64(2460762.4570551086), np.float64(2460762.4571669567)], [np.float64(2460762.457278805), np.float64(2460762.457614349)], [np.float64(2460762.459180223), np.float64(2460762.459292071)], [np.float64(2460762.4600750078), np.float64(2460762.460298704)], [np.float64(2460762.4606342483), np.float64(2460762.4609697927)], [np.float64(2460762.4673451344), np.float64(2460762.4676806787)], [np.float64(2460762.471036122), np.float64(2460762.4712598184)], [np.float64(2460762.4721546033), np.float64(2460762.472378299)], [np.float64(2460762.4748389577), np.float64(2460762.475062654)], [np.float64(2460762.4790891856), np.float64(2460762.47942473)], [np.float64(2460762.486471161), np.float64(2460762.486583009)], [np.float64(2460762.4881488825), np.float64(2460762.4883725788)], [np.float64(2460762.4894910594), np.float64(2460762.4896029076)], [np.float64(2460762.491056933), np.float64(2460762.4913924774)], [np.float64(2460762.4917280218), np.float64(2460762.491951718)], [np.float64(2460762.4936294397), np.float64(2460762.493853136)], [np.float64(2460762.4994455413), np.float64(2460762.4996692375)], [np.float64(2460762.508840782), np.float64(2460762.5090644783)], [np.float64(2460762.5125317695), np.float64(2460762.5126436176)], [np.float64(2460762.512979162), np.float64(2460762.51309101)], [np.float64(2460762.5137620987), np.float64(2460762.513873947)], [np.float64(2460762.515887213), np.float64(2460762.516110909)], [np.float64(2460762.5229336433), np.float64(2460762.5232691877)], [np.float64(2460762.5242758207), np.float64(2460762.524499517)], [np.float64(2460762.525394302), np.float64(2460762.52550615)], [np.float64(2460762.529980074), np.float64(2460762.5302037704)], [np.float64(2460762.5347895427), np.float64(2460762.534901391)], [np.float64(2460762.536914657), np.float64(2460762.537026505)], [np.float64(2460762.5394871635), np.float64(2460762.5395990117)], [np.float64(2460762.542283366), np.float64(2460762.542395214)], [np.float64(2460762.549441645), np.float64(2460762.549665341)], [np.float64(2460762.551119366), np.float64(2460762.5512312143)], [np.float64(2460762.5567117715), np.float64(2460762.5569354678)], [np.float64(2460762.557047316), np.float64(2460762.557159164)], [np.float64(2460762.561185696), np.float64(2460762.5614093924)], [np.float64(2460762.569574304), np.float64(2460762.569798)], [np.float64(2460762.5780747603), np.float64(2460762.5781866084)], [np.float64(2460762.580199874), np.float64(2460762.5804235702)], [np.float64(2460762.5824368363), np.float64(2460762.5825486844)], [np.float64(2460762.5852330388), np.float64(2460762.585344887)], [np.float64(2460762.5887003304), np.float64(2460762.5889240266)], [np.float64(2460762.590825444), np.float64(2460762.590937292)], [np.float64(2460762.5921676215), np.float64(2460762.592503166)], [np.float64(2460762.593509799), np.float64(2460762.593733495)], [np.float64(2460762.597088938), np.float64(2460762.597200786)], [np.float64(2460762.5984311155), np.float64(2460762.6003325335)], [np.float64(2460762.6004443816), np.float64(2460762.6005562297)], [np.float64(2460762.600668078), np.float64(2460762.600779926)], [np.float64(2460762.6017865585), np.float64(2460762.6020102547)], [np.float64(2460762.6035761284), np.float64(2460762.6036879765)], [np.float64(2460762.604023521), np.float64(2460762.6044709133)], [np.float64(2460762.6046946095), np.float64(2460762.6048064576)], [np.float64(2460762.6049183058), np.float64(2460762.605142002)], [np.float64(2460762.6078263563), np.float64(2460762.6079382044)], [np.float64(2460762.608385597), np.float64(2460762.608609293)], [np.float64(2460762.6087211412), np.float64(2460762.6088329894)], [np.float64(2460762.6090566856), np.float64(2460762.60939223)], [np.float64(2460762.613866154), np.float64(2460762.613978002)], [np.float64(2460762.615543876), np.float64(2460762.615655724)], [np.float64(2460762.61766899), np.float64(2460762.617780838)], [np.float64(2460762.621136281), np.float64(2460762.6212481293)], [np.float64(2460762.6223666104), np.float64(2460762.6224784586)], [np.float64(2460762.623932484), np.float64(2460762.624044332)], [np.float64(2460762.6298604333), np.float64(2460762.6299722814)], [np.float64(2460762.6320973956), np.float64(2460762.6322092437)], [np.float64(2460762.633551421), np.float64(2460762.6337751173)], [np.float64(2460762.6402623076), np.float64(2460762.640486004)], [np.float64(2460762.6413807883), np.float64(2460762.6414926364)], [np.float64(2460762.6426111176), np.float64(2460762.64305851)], [np.float64(2460762.6432822063), np.float64(2460762.647420586)], [np.float64(2460762.6477561304), np.float64(2460762.648203523)], [np.float64(2460762.648427219), np.float64(2460762.6486509154)], [np.float64(2460762.650104941), np.float64(2460762.6508878777)], [np.float64(2460762.650999726), np.float64(2460762.6663229163)]]

freq_flags: [[np.float64(46859741.2109375), np.float64(55038452.1484375)], [np.float64(55160522.4609375), np.float64(55282592.7734375)], [np.float64(61630249.0234375), np.float64(61874389.6484375)], [np.float64(62240600.5859375), np.float64(63583374.0234375)], [np.float64(63705444.3359375), np.float64(66879272.4609375)], [np.float64(67001342.7734375), np.float64(67489624.0234375)], [np.float64(67733764.6484375), np.float64(67977905.2734375)], [np.float64(69686889.6484375), np.float64(70175170.8984375)], [np.float64(72738647.4609375), np.float64(72860717.7734375)], [np.float64(73837280.2734375), np.float64(74081420.8984375)], [np.float64(74325561.5234375), np.float64(74935913.0859375)], [np.float64(75180053.7109375), np.float64(75424194.3359375)], [np.float64(75668334.9609375), np.float64(75912475.5859375)], [np.float64(76400756.8359375), np.float64(76522827.1484375)], [np.float64(76889038.0859375), np.float64(77011108.3984375)], [np.float64(77499389.6484375), np.float64(77743530.2734375)], [np.float64(78109741.2109375), np.float64(78353881.8359375)], [np.float64(78720092.7734375), np.float64(78964233.3984375)], [np.float64(79208374.0234375), np.float64(79574584.9609375)], [np.float64(79818725.5859375), np.float64(80184936.5234375)], [np.float64(80429077.1484375), np.float64(80795288.0859375)], [np.float64(81039428.7109375), np.float64(81283569.3359375)], [np.float64(81649780.2734375), np.float64(81893920.8984375)], [np.float64(82138061.5234375), np.float64(82382202.1484375)], [np.float64(82748413.0859375), np.float64(82992553.7109375)], [np.float64(83236694.3359375), np.float64(83602905.2734375)], [np.float64(83724975.5859375), np.float64(84091186.5234375)], [np.float64(84335327.1484375), np.float64(84579467.7734375)], [np.float64(84823608.3984375), np.float64(85067749.0234375)], [np.float64(85311889.6484375), np.float64(85556030.2734375)], [np.float64(85678100.5859375), np.float64(86044311.5234375)], [np.float64(86166381.8359375), np.float64(86410522.4609375)], [np.float64(86532592.7734375), np.float64(86776733.3984375)], [np.float64(86898803.7109375), np.float64(108261108.3984375)], [np.float64(109970092.7734375), np.float64(110092163.0859375)], [np.float64(112167358.3984375), np.float64(112289428.7109375)], [np.float64(112655639.6484375), np.float64(112777709.9609375)], [np.float64(113265991.2109375), np.float64(113388061.5234375)], [np.float64(113632202.1484375), np.float64(113754272.4609375)], [np.float64(115829467.7734375), np.float64(116561889.6484375)], [np.float64(116683959.9609375), np.float64(116806030.2734375)], [np.float64(124740600.5859375), np.float64(125228881.8359375)], [np.float64(127548217.7734375), np.float64(127670288.0859375)], [np.float64(129989624.0234375), np.float64(130111694.3359375)], [np.float64(136337280.2734375), np.float64(136459350.5859375)], [np.float64(136947631.8359375), np.float64(138168334.9609375)], [np.float64(138656616.2109375), np.float64(138778686.5234375)], [np.float64(139511108.3984375), np.float64(139633178.7109375)], [np.float64(141464233.3984375), np.float64(141586303.7109375)], [np.float64(141708374.0234375), np.float64(141830444.3359375)], [np.float64(142074584.9609375), np.float64(142318725.5859375)], [np.float64(142684936.5234375), np.float64(143539428.7109375)], [np.float64(143783569.3359375), np.float64(144027709.9609375)], [np.float64(144638061.5234375), np.float64(144760131.8359375)], [np.float64(145492553.7109375), np.float64(145736694.3359375)], [np.float64(146224975.5859375), np.float64(146347045.8984375)], [np.float64(146469116.2109375), np.float64(146591186.5234375)], [np.float64(147445678.7109375), np.float64(147567749.0234375)], [np.float64(148178100.5859375), np.float64(148300170.8984375)], [np.float64(148422241.2109375), np.float64(148544311.5234375)], [np.float64(149154663.0859375), np.float64(149276733.3984375)], [np.float64(149887084.9609375), np.float64(150009155.2734375)], [np.float64(153060913.0859375), np.float64(153182983.3984375)], [np.float64(153427124.0234375), np.float64(153549194.3359375)], [np.float64(154159545.8984375), np.float64(154403686.5234375)], [np.float64(155014038.0859375), np.float64(155136108.3984375)], [np.float64(155258178.7109375), np.float64(155380249.0234375)], [np.float64(155868530.2734375), np.float64(156112670.8984375)], [np.float64(156845092.7734375), np.float64(156967163.0859375)], [np.float64(157577514.6484375), np.float64(157699584.9609375)], [np.float64(158187866.2109375), np.float64(158309936.5234375)], [np.float64(158676147.4609375), np.float64(158798217.7734375)], [np.float64(159164428.7109375), np.float64(159286499.0234375)], [np.float64(159774780.2734375), np.float64(160751342.7734375)], [np.float64(161361694.3359375), np.float64(161483764.6484375)], [np.float64(169906616.2109375), np.float64(170639038.0859375)], [np.float64(170883178.7109375), np.float64(171005249.0234375)], [np.float64(171249389.6484375), np.float64(171371459.9609375)], [np.float64(171493530.2734375), np.float64(171615600.5859375)], [np.float64(171737670.8984375), np.float64(171859741.2109375)], [np.float64(175155639.6484375), np.float64(175399780.2734375)], [np.float64(181137084.9609375), np.float64(181381225.5859375)], [np.float64(183212280.2734375), np.float64(183334350.5859375)], [np.float64(186386108.3984375), np.float64(186508178.7109375)], [np.float64(187362670.8984375), np.float64(187606811.5234375)], [np.float64(189926147.4609375), np.float64(190048217.7734375)], [np.float64(191024780.2734375), np.float64(191513061.5234375)], [np.float64(193222045.8984375), np.float64(193344116.2109375)], [np.float64(195663452.1484375), np.float64(195785522.4609375)], [np.float64(196395874.0234375), np.float64(196517944.3359375)], [np.float64(196884155.2734375), np.float64(197006225.5859375)], [np.float64(197128295.8984375), np.float64(197372436.5234375)], [np.float64(198104858.3984375), np.float64(198348999.0234375)], [np.float64(199203491.2109375), np.float64(199325561.5234375)], [np.float64(199935913.0859375), np.float64(200180053.7109375)], [np.float64(201644897.4609375), np.float64(201889038.0859375)], [np.float64(203231811.5234375), np.float64(203353881.8359375)], [np.float64(204696655.2734375), np.float64(204818725.5859375)], [np.float64(204940795.8984375), np.float64(205062866.2109375)], [np.float64(205184936.5234375), np.float64(205307006.8359375)], [np.float64(206893920.8984375), np.float64(207015991.2109375)], [np.float64(207138061.5234375), np.float64(207382202.1484375)], [np.float64(208480834.9609375), np.float64(208724975.5859375)], [np.float64(209945678.7109375), np.float64(210067749.0234375)], [np.float64(210433959.9609375), np.float64(210556030.2734375)], [np.float64(212142944.3359375), np.float64(212265014.6484375)], [np.float64(215194702.1484375), np.float64(215316772.4609375)], [np.float64(215682983.3984375), np.float64(215805053.7109375)], [np.float64(220565795.8984375), np.float64(220809936.5234375)], [np.float64(221176147.4609375), np.float64(221298217.7734375)], [np.float64(222763061.5234375), np.float64(223739624.0234375)], [np.float64(225692749.0234375), np.float64(225814819.3359375)], [np.float64(227401733.3984375), np.float64(227523803.7109375)], [np.float64(227645874.0234375), np.float64(227767944.3359375)], [np.float64(227890014.6484375), np.float64(228012084.9609375)], [np.float64(229110717.7734375), np.float64(229476928.7109375)], [np.float64(229965209.9609375), np.float64(230087280.2734375)], [np.float64(231063842.7734375), np.float64(231185913.0859375)], [np.float64(233261108.3984375), np.float64(233383178.7109375)], [np.float64(233993530.2734375), np.float64(234359741.2109375)]]

ex_ants: [[np.int64[4], Jee], [np.int64[4], Jnn], [np.int64[7], Jee], [np.int64[8], Jee], [np.int64[8], Jnn], [np.int64[10], Jee], [np.int64[10], Jnn], [np.int64[15], Jnn], [np.int64[18], Jee], [np.int64[18], Jnn], [np.int64[20], Jnn], [np.int64[21], Jee], [np.int64[22], Jee], [np.int64[22], Jnn], [np.int64[27], Jee], [np.int64[27], Jnn], [np.int64[28], Jee], [np.int64[28], Jnn], [np.int64[29], Jee], [np.int64[29], Jnn], [np.int64[30], Jee], [np.int64[32], Jnn], [np.int64[33], Jnn], [np.int64[34], Jee], [np.int64[34], Jnn], [np.int64[37], Jee], [np.int64[37], Jnn], [np.int64[40], Jnn], [np.int64[42], Jnn], [np.int64[44], Jee], [np.int64[46], Jee], [np.int64[51], Jee], [np.int64[55], Jee], [np.int64[67], Jnn], [np.int64[70], Jee], [np.int64[70], Jnn], [np.int64[71], Jee], [np.int64[71], Jnn], [np.int64[72], Jnn], [np.int64[75], Jee], [np.int64[75], Jnn], [np.int64[77], Jnn], [np.int64[78], Jee], [np.int64[80], Jee], [np.int64[80], Jnn], [np.int64[81], Jnn], [np.int64[86], Jee], [np.int64[86], Jnn], [np.int64[87], Jee], [np.int64[96], Jee], [np.int64[96], Jnn], [np.int64[98], Jnn], [np.int64[99], Jnn], [np.int64[102], Jnn], [np.int64[104], Jnn], [np.int64[105], Jee], [np.int64[107], Jee], [np.int64[108], Jnn], [np.int64[109], Jnn], [np.int64[112], Jee], [np.int64[114], Jee], [np.int64[114], Jnn], [np.int64[115], Jee], [np.int64[117], Jee], [np.int64[120], Jee], [np.int64[121], Jee], [np.int64[130], Jee], [np.int64[130], Jnn], [np.int64[135], Jee], [np.int64[136], Jnn], [np.int64[143], Jnn], [np.int64[149], Jee], [np.int64[154], Jnn], [np.int64[155], Jnn], [np.int64[161], Jnn], [np.int64[164], Jee], [np.int64[167], Jnn], [np.int64[169], Jee], [np.int64[169], Jnn], [np.int64[170], Jee], [np.int64[171], Jnn], [np.int64[172], Jnn], [np.int64[173], Jnn], [np.int64[174], Jnn], [np.int64[175], Jnn], [np.int64[176], Jnn], [np.int64[180], Jee], [np.int64[180], Jnn], [np.int64[187], Jnn], [np.int64[188], Jnn], [np.int64[189], Jee], [np.int64[197], Jnn], [np.int64[199], Jnn], [np.int64[200], Jee], [np.int64[200], Jnn], [np.int64[202], Jnn], [np.int64[204], Jnn], [np.int64[206], Jnn], [np.int64[208], Jee], [np.int64[208], Jnn], [np.int64[209], Jee], [np.int64[209], Jnn], [np.int64[210], Jee], [np.int64[210], Jnn], [np.int64[212], Jnn], [np.int64[213], Jee], [np.int64[216], Jee], [np.int64[216], Jnn], [np.int64[218], Jnn], [np.int64[227], Jee], [np.int64[227], Jnn], [np.int64[231], Jnn], [np.int64[232], Jee], [np.int64[238], Jnn], [np.int64[239], Jee], [np.int64[240], Jee], [np.int64[240], Jnn], [np.int64[244], Jee], [np.int64[245], Jnn], [np.int64[246], Jee], [np.int64[246], Jnn], [np.int64[250], Jee], [np.int64[251], Jee], [np.int64[252], Jnn], [np.int64[253], Jnn], [np.int64[255], Jee], [np.int64[255], Jnn], [np.int64[261], Jee], [np.int64[261], Jnn], [np.int64[262], Jee], [np.int64[262], Jnn], [np.int64[266], Jee], [np.int64[266], Jnn], [np.int64[268], Jee], [np.int64[268], Jnn], [np.int64[269], Jnn], [np.int64[320], Jee], [np.int64[320], Jnn], [np.int64[321], Jee], [np.int64[321], Jnn], [np.int64[322], Jee], [np.int64[322], Jnn], [np.int64[323], Jee], [np.int64[323], Jnn], [np.int64[324], Jee], [np.int64[324], Jnn], [np.int64[325], Jee], [np.int64[325], Jnn], [np.int64[326], Jee], [np.int64[326], Jnn], [np.int64[327], Jee], [np.int64[327], Jnn], [np.int64[328], Jee], [np.int64[328], Jnn], [np.int64[329], Jee], [np.int64[329], Jnn], [np.int64[331], Jee], [np.int64[331], Jnn], [np.int64[332], Jee], [np.int64[332], Jnn], [np.int64[333], Jee], [np.int64[333], Jnn], [np.int64[336], Jee], [np.int64[336], Jnn], [np.int64[340], Jee], [np.int64[340], Jnn]]

Metadata¶

In [24]:
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
    exec(f'from {repo} import __version__')
    print(f'{repo}: {__version__}')
hera_cal: 3.7.1.dev18+g10e9584
hera_qm: 2.2.1.dev2+ga535e9e
hera_filters: 0.1.6.dev9+gf165ec1
hera_notebook_templates: 0.1.dev989+gee0995d
pyuvdata: 3.1.3
In [25]:
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 172.77 minutes.