Second Round of Full Day RFI Flagging¶
by Josh Dillon, last updated October 13, 2024
This notebook is synthesizes information from individual delay_filtered_average_zscore notebooks to find low-level RFI and flag it. That notebook takes smooth_cal
ibrated data, redundantly averages it, performs a high-pass delay filter, and then incoherently averages across baselines, creating a per-polarization z-score. This notebook then takes that whole night of z-scores and finds a new set of flags to both add to the smooth_cal
files, which are updated in place, and to write down as new UVFlag
waterfall-type .h5
files.
Here's a set of links to skip to particular figures and tables:
• Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
• Figure 2: Histogram of z-scores¶
• Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
• Figure 4: Spectra of Time-Averaged z-Scores¶
• Figure 5: Summary of Flags Before and After Round 2 Flagging¶
import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import matplotlib.pyplot as plt
import matplotlib
import copy
import warnings
from pyuvdata import UVFlag, UVCal
from hera_cal import utils
from hera_qm import xrfi
from hera_qm.time_series_metrics import true_stretches
from hera_filters import dspec
from IPython.display import display, HTML
%matplotlib inline
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore') # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
# get input data file names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459861/zen.2459861.25297.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
# get input and output suffixes
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ZSCORE_SUFFIX = os.environ.get("ZSCORE_SUFFIX", 'sum.red_avg_zscore.h5')
FLAG_WATERFALL2_SUFFIX = os.environ.get("FLAG_WATERFALL2_SUFFIX", 'sum.flag_waterfall_round_2.h5')
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
# build globs
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, SMOOTH_CAL_SUFFIX)
zscore_glob = sum_glob.replace(SUM_SUFFIX, ZSCORE_SUFFIX)
# build out yaml file
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
# get flagging parameters
Z_THRESH = float(os.environ.get("Z_THRESH", 4))
WS_Z_THRESH = float(os.environ.get("WS_Z_THRESH", 2))
AVG_Z_THRESH = float(os.environ.get("AVG_Z_THRESH", 1))
MAX_FREQ_FLAG_FRAC = float(os.environ.get("MAX_FREQ_FLAG_FRAC", .25))
MAX_TIME_FLAG_FRAC = float(os.environ.get("MAX_TIME_FLAG_FRAC", .1))
AVG_SPECTRUM_FILTER_DELAY = float(os.environ.get("AVG_SPECTRUM_FILTER_DELAY", 250)) # in ns
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
TIME_AVG_DELAY_FILT_SNR_THRESH = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_THRESH", 4.0))
TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = float(os.environ.get("TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE", 1.5))
for setting in ['Z_THRESH', 'WS_Z_THRESH', 'AVG_Z_THRESH', 'MAX_FREQ_FLAG_FRAC', 'MAX_TIME_FLAG_FRAC', 'AVG_SPECTRUM_FILTER_DELAY',
'EIGENVAL_CUTOFF', 'TIME_AVG_DELAY_FILT_SNR_THRESH', 'TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE']:
print(f'{setting} = {eval(setting)}')
Z_THRESH = 4.0 WS_Z_THRESH = 2.0 AVG_Z_THRESH = 1.0 MAX_FREQ_FLAG_FRAC = 0.25 MAX_TIME_FLAG_FRAC = 0.1 AVG_SPECTRUM_FILTER_DELAY = 250.0 EIGENVAL_CUTOFF = 1e-12 TIME_AVG_DELAY_FILT_SNR_THRESH = 4.0 TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE = 1.5
Load z-scores¶
# load z-scores
zscore_files = sorted(glob.glob(zscore_glob))
print(f'Found {len(zscore_files)} *.{ZSCORE_SUFFIX} files starting with {zscore_files[0]}.')
uvf = UVFlag(zscore_files, use_future_array_shapes=True)
Found 1568 *.sum.red_avg_zscore.h5 files starting with /mnt/sn1/data2/2460782/zen.2460782.21093.sum.red_avg_zscore.h5.
# get calibration solution files
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{SMOOTH_CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1568 *.sum.smooth.calfits files starting with /mnt/sn1/data2/2460782/zen.2460782.21093.sum.smooth.calfits.
assert len(zscore_files) == len(cal_files)
# extract z-scores and correct by a single number per polarization to account for biases created by filtering
zscore = {pol: uvf.metric_array[:, :, np.argwhere(uvf.polarization_array == utils.polstr2num(pol, x_orientation=uvf.x_orientation))[0][0]] for pol in ['ee', 'nn']}
zscore = {pol: zscore[pol] - np.nanmedian(zscore[pol]) for pol in zscore}
freqs = uvf.freq_array
times = uvf.time_array
extent = [freqs[0] / 1e6, freqs[-1] / 1e6, times[-1] - int(times[0]), times[0] - int(times[0])]
def plot_max_z_score(zscore, flags=None, vmin=-5, vmax=5):
if flags is None:
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
plt.figure(figsize=(14,10), dpi=100)
plt.imshow(np.where(flags, np.nan, np.nanmax([zscore['ee'], zscore['nn']], axis=0)), aspect='auto',
cmap='coolwarm', interpolation='none', vmin=vmin, vmax=vmax, extent=extent)
plt.colorbar(location='top', label='Max z-score of either polarization', extend='both', aspect=40, pad=.02)
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 1: Waterfall of Maximum z-Score of Either Polarization Before Round 2 Flagging¶
Shows the worse of the two results from delay_filtered_average_zscore from either polarization. Dips near flagged channels are expected, due to overfitting of noise. Positive-going excursions are problematic and likely evidence of RFI.
plot_max_z_score(zscore)
All-NaN axis encountered
def plot_histogram():
plt.figure(figsize=(14,4), dpi=100)
bins = np.arange(-50, 100, .1)
hist_ee = plt.hist(np.ravel(zscore['ee']), bins=bins, density=True, label='ee-polarized z-scores', alpha=.5)
hist_nn = plt.hist(np.ravel(zscore['nn']), bins=bins, density=True, label='nn-polarized z-scores', alpha=.5)
plt.plot(bins, (2*np.pi)**-.5 * np.exp(-bins**2 / 2), 'k:', label='Gaussian approximate\nnoise-only distribution')
plt.axvline(WS_Z_THRESH, c='r', ls='--', label='Watershed z-score')
plt.axvline(Z_THRESH, c='r', ls='-', label='Threshold z-score')
plt.yscale('log')
all_densities = np.concatenate([hist_ee[0][hist_ee[0] > 0], hist_nn[0][hist_nn[0] > 0]])
plt.ylim(np.min(all_densities) / 2, np.max(all_densities) * 2)
plt.xlim([-50, 100])
plt.legend()
plt.xlabel('z-score')
plt.ylabel('Density')
plt.tight_layout()
Figure 2: Histogram of z-scores¶
Shows a comparison of the histogram of z-scores in this file (one per polarization) to a Gaussian approximation of what one might expect from thermal noise. Without filtering, the actual distribution is a weighted sum of Rayleigh distributions. Filtering further complicates this. To make the z-scores more reliable, a single per-polarization median is subtracted from each waterfall, which allows us to flag low-level outliers with more confidence. Any points beyond the solid red line are flagged. Any points neighboring a flag beyond the dashed red line are also flagged. Finally, flagging is performed for low-level outliers in whole times or channels.
plot_histogram()
Perform flagging¶
def iteratively_flag_on_averaged_zscore(flags, zscore, avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True):
'''Flag whole integrations or channels based on average z-score. This is done
iteratively to prevent bad times affecting channel averages or vice versa.'''
flagged_chan_count = 0
flagged_int_count = 0
while True:
zspec = avg_func(np.where(flags, np.nan, zscore), axis=0)
ztseries = avg_func(np.where(flags, np.nan, zscore), axis=1)
if (np.nanmax(zspec) < avg_z_thresh) and (np.nanmax(ztseries) < avg_z_thresh):
break
if np.nanmax(zspec) >= np.nanmax(ztseries):
flagged_chan_count += np.sum((zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh))
flags[:, (zspec >= np.nanmax(ztseries)) & (zspec >= avg_z_thresh)] = True
else:
flagged_int_count += np.sum((ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh))
flags[(ztseries >= np.nanmax(zspec)) & (ztseries >= avg_z_thresh), :] = True
if verbose:
print(f'\tFlagging an additional {flagged_int_count} integrations and {flagged_chan_count} channels.')
def impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True):
'''Flag channels already flagged more than max_flag_frac (excluding completely flagged times).'''
unflagged_times = ~np.all(flags, axis=1)
frequently_flagged_chans = np.mean(flags[unflagged_times, :], axis=0) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_chans) - np.sum(np.all(flags, axis=0))} channels previously flagged {max_flag_frac:.2%} or more.')
flags[:, frequently_flagged_chans] = True
def impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True):
'''Flag times already flagged more than max_flag_frac (excluding completely flagged channels).'''
unflagged_chans = ~np.all(flags, axis=0)
frequently_flagged_times = np.mean(flags[:, unflagged_chans], axis=1) >= max_flag_frac
if verbose:
print(f'\tFlagging {np.sum(frequently_flagged_times) - np.sum(np.all(flags, axis=1))} times previously flagged {max_flag_frac:.2%} or more.')
flags[frequently_flagged_times, :] = True
def time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Produces SNRs after time-averaging z-scores and delay filtering, accounting for flagging's effect on the filter."""
# figure out high and low band based on FM gap at 100 MHz
flagged_stretches = true_stretches(np.all(flags, axis=0))
FM_gap = [fs for fs in flagged_stretches if fs.start <= np.argmin(np.abs(freqs - 100e6)) < fs.stop][0]
low_band = slice((0 if flagged_stretches[0].start != 0 else flagged_stretches[0].stop), FM_gap.start)
high_band = slice(FM_gap.stop, (len(freqs) if flagged_stretches[-1].stop != len(freqs) else flagged_stretches[-1].start))
filt_SNR = {}
for pol in zscore:
# calculate timeavg_SNR and filter
noise_prediction = 1.0 / np.sum(~flags, axis=0)**.5
timeavg_SNR = np.nanmean(np.where(flags, np.nan, zscore[pol] / noise_prediction), axis=0)
wgts = np.where(np.isfinite(timeavg_SNR), 1, 0)
model = np.zeros_like(timeavg_SNR)
for band in [low_band, high_band]:
model[band], _, _ = dspec.fourier_filter(freqs[band], np.where(np.isfinite(timeavg_SNR[band]), timeavg_SNR[band], 0),
wgts[band], [0], [AVG_SPECTRUM_FILTER_DELAY / 1e9], mode="dpss_solve",
eigenval_cutoff=[EIGENVAL_CUTOFF], suppression_factors=[EIGENVAL_CUTOFF])
filt_SNR[pol] = timeavg_SNR - model
# correct for impact of filter
correction_factors = np.ones_like(wgts) * np.nan
for band in [low_band, high_band]:
X = dspec.dpss_operator(freqs[band], [0], filter_half_widths=[AVG_SPECTRUM_FILTER_DELAY / 1e9], eigenval_cutoff=[EIGENVAL_CUTOFF])[0]
W = wgts[band]
leverage = np.diag(X @ np.linalg.pinv(np.dot(X.T * W, X)) @ (X.T * W))
correction_factors[band] = np.where(leverage > 0, (1 - leverage)**.5, np.nan) # because the underlying data should be gaussian
filt_SNR[pol] /= correction_factors
return filt_SNR
def iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF):
"""Flag whole channels based on their outlierness after delay-filterd time-averaged zscores.
This is done iteratively since the delay filter can be unduly influenced by large outliers."""
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
while True:
largest_SNR = np.nanmax(list(filt_SNR.values()))
if largest_SNR < thresh:
break
#
cut = np.max([thresh, largest_SNR / dynamic_range])
for pol in filt_SNR:
flags[:, filt_SNR[pol] > cut] = True
filt_SNR = time_avg_zscore_dly_filt_SNRs(flags, filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
flags = np.any(~np.isfinite(list(zscore.values())), axis=0)
print(f'{np.mean(flags):.3%} of waterfall flagged to start.')
# flag whole integrations or channels using outliers in median
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmedian, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with median z > {AVG_Z_THRESH}.')
# flag largest outliers
for pol in ['ee', 'nn']:
flags |= (zscore[pol] > Z_THRESH)
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging z > {Z_THRESH} outliers.')
# watershed flagging
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
# flag whole integrations or channels using outliers in mean
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
iteratively_flag_on_averaged_zscore(flags, zscore[pol], avg_func=np.nanmean, avg_z_thresh=AVG_Z_THRESH, verbose=True)
impose_max_chan_flag_frac(flags, max_flag_frac=MAX_FREQ_FLAG_FRAC, verbose=True)
impose_max_time_flag_frac(flags, max_flag_frac=MAX_TIME_FLAG_FRAC, verbose=True)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after flagging whole times and channels with average z > {AVG_Z_THRESH}.')
# flag channels based on delay filter
iteratively_flag_on_delay_filtered_time_avg_zscore(flags, thresh=TIME_AVG_DELAY_FILT_SNR_THRESH, dynamic_range=TIME_AVG_DELAY_FILT_SNR_DYNAMIC_RANGE,
filter_delay=AVG_SPECTRUM_FILTER_DELAY, eigenval_cutoff=EIGENVAL_CUTOFF)
print(f'{np.mean(flags):.3%} of flagging channels that are {TIME_AVG_DELAY_FILT_SNR_THRESH}σ outliers after delay filtering the time average.')
# watershed flagging again
while True:
nflags = np.sum(flags)
for pol in ['ee', 'nn']:
flags |= xrfi._ws_flag_waterfall(zscore[pol], flags, WS_Z_THRESH)
if np.sum(flags) == nflags:
break
print(f'{np.mean(flags):.3%} of waterfall flagged after another round of watershed flagging on z > {WS_Z_THRESH} neighbors of prior flags.')
23.218% of waterfall flagged to start.
All-NaN slice encountered
Flagging an additional 0 integrations and 7 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 8 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 1 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 24.077% of waterfall flagged after flagging whole times and channels with median z > 1.0. 25.581% of waterfall flagged after flagging z > 4.0 outliers.
27.758% of waterfall flagged after watershed flagging on z > 2.0 neighbors of prior flags. Flagging an additional 0 integrations and 0 channels. Flagging 23 channels previously flagged 25.00% or more. Flagging 489 times previously flagged 10.00% or more.
Mean of empty slice Mean of empty slice
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more.
Flagging an additional 0 integrations and 0 channels. Flagging 0 channels previously flagged 25.00% or more. Flagging 0 times previously flagged 10.00% or more. 39.347% of waterfall flagged after flagging whole times and channels with average z > 1.0.
Mean of empty slice Casting complex values to real discards the imaginary part Casting complex values to real discards the imaginary part
43.220% of flagging channels that are 4.0σ outliers after delay filtering the time average.
43.659% of waterfall flagged after another round of watershed flagging on z > 2.0 neighbors of prior flags.
Show results of flagging¶
Figure 3: Waterfall of Maximum z-Score of Either Polarization After Round 2 Flagging¶
The same as Figure 1, but after the flagging performed in this notebook.
plot_max_z_score(zscore, flags=flags)
All-NaN axis encountered
def zscore_spectra(ylim=[-3, 3], flags=flags):
fig, axes = plt.subplots(2, 1, figsize=(14,6), dpi=100, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['ee', 'nn']):
ax.plot(freqs / 1e6, np.nanmean(zscore[pol], axis=0),'r', label=f'{pol}-Polarization Before Round 2 Flagging', lw=.5)
ax.plot(freqs / 1e6, np.nanmean(np.where(flags, np.nan, zscore[pol]), axis=0), label=f'{pol}-Polarization After Round 2 Flagging')
ax.legend(loc='lower right')
ax.set_ylabel('Time-Averged Z-Score\n(Excluding Flags)')
ax.set_ylim(ylim)
axes[1].set_xlabel('Frequency (MHz)')
plt.tight_layout()
Figure 4: Spectra of Time-Averaged z-Scores¶
The average along the time axis of Figures 1 and 3 (though now separated per-polarization). This plot is useful for showing channels with repeated low-level RFI.
zscore_spectra()
Mean of empty slice Mean of empty slice
def summarize_flagging(flags=flags):
plt.figure(figsize=(14,10), dpi=100)
cmap = matplotlib.colors.ListedColormap(((0, 0, 0),) + matplotlib.cm.get_cmap("Set2").colors[0:2])
plt.imshow(np.where(np.any(~np.isfinite(list(zscore.values())), axis=0), 1, np.where(flags, 2, 0)),
aspect='auto', cmap=cmap, interpolation='none', extent=extent)
plt.clim([-.5, 2.5])
cbar = plt.colorbar(location='top', aspect=40, pad=.02)
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['Unflagged', 'Previously Flagged', 'Flagged Here Using Delayed Filtered z-Scores'])
plt.xlabel('Frequency (MHz)')
plt.ylabel(f'JD - {int(times[0])}')
plt.tight_layout()
Figure 5: Summary of Flags Before and After Round 2 Flagging¶
This plot shows which times and frequencies were flagged before and after this notebook. It is directly comparable to Figure 5 of the first round full_day_rfi notebook.
summarize_flagging()
The get_cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.
Save results¶
add_to_history = 'by full_day_rfi_round_2 notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
tind = 0
always_flagged_ants = set()
ever_unflagged_ants = set()
for cal_file in cal_files:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# update cal_file
uvc = UVCal()
uvc.read(cal_file, use_future_array_shapes=True)
uvc.flag_array |= (flags[tind:tind + len(uvc.time_array), :].T)[None, :, :, None]
uvc.history += 'Modified ' + add_to_history
uvc.write_calfits(cal_file, clobber=True)
# keep track of flagged antennas
for antnum in uvc.ant_array:
for antpol in ['Jee', 'Jnn']:
if np.all(uvc.get_flags(antnum, antpol)):
if (antnum, antpol) not in ever_unflagged_ants:
always_flagged_ants.add((antnum, antpol))
else:
ever_unflagged_ants.add((antnum, antpol))
always_flagged_ants.discard((antnum, antpol))
# Create new flag object
uvf_out = UVFlag(uvc, waterfall=True, mode='flag')
uvf_out.flag_array |= flags[tind:tind + len(uvc.time_array), :, None]
uvf_out.history += 'Produced ' + add_to_history
uvf_out.write(cal_file.replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX), clobber=True)
# increment time index
tind += len(uvc.time_array)
print(f'Saved {len(cal_files)} *.{FLAG_WATERFALL2_SUFFIX} files starting with {cal_files[0].replace(SMOOTH_CAL_SUFFIX, FLAG_WATERFALL2_SUFFIX)}.')
Saved 1568 *.sum.flag_waterfall_round_2.h5 files starting with /mnt/sn1/data2/2460782/zen.2460782.21093.sum.flag_waterfall_round_2.h5.
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all(flags, axis=1)
all_flagged_freqs = np.all(flags, axis=0)
all_flagged_ants = [(int(ant[0]), ant[1]) for ant in sorted(always_flagged_ants)]
dt = np.median(np.diff(times))
out_yml_str = 'JD_flags: ' + str([[float(times[flag_stretch][0] - dt / 2), float(times[flag_stretch][-1] + dt / 2)]
for flag_stretch in true_stretches(all_flagged_times)])
df = np.median(np.diff(freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[float(freqs[flag_stretch][0] - df / 2), float(freqs[flag_stretch][-1] + df / 2)]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /mnt/sn1/data2/2460782/2460782_aposteriori_flags.yaml ------------------------------------------------------------------------------ JD_flags: [[2460782.2123847925, 2460782.212720337], [2460782.2137269694, 2460782.214062514], [2460782.217306109, 2460782.2175298054], [2460782.2207734003, 2460782.221332641], [2460782.221444489, 2460782.2217800333], [2460782.2218918814, 2460782.2221155777], [2460782.2239051475, 2460782.2241288438], [2460782.2260302613, 2460782.2263658056], [2460782.2271487424, 2460782.2273724386], [2460782.2316226666, 2460782.232181907], [2460782.2343070214, 2460782.235089958], [2460782.2352018063, 2460782.23553735], [2460782.236543983, 2460782.2367676795], [2460782.237438768, 2460782.2377743125], [2460782.2395638824, 2460782.2398994267], [2460782.2413534517, 2460782.2419126923], [2460782.242583781, 2460782.2430311735], [2460782.244373351, 2460782.2448207433], [2460782.246274769, 2460782.2467221613], [2460782.2475050976, 2460782.247728794], [2460782.2481761863, 2460782.2485117307], [2460782.248623579, 2460782.248735427], [2460782.254104136, 2460782.2543278323], [2460782.255222617, 2460782.2555581615], [2460782.2586899083, 2460782.2596965414], [2460782.263723073, 2460782.2642823136], [2460782.265624491, 2460782.265736339], [2460782.2678614534, 2460782.2679733015], [2460782.2694273265, 2460782.269874719], [2460782.2703221114, 2460782.2709932], [2460782.2758026686, 2460782.276250061], [2460782.277144846, 2460782.2775922385], [2460782.277927783, 2460782.2783751753], [2460782.2787107197, 2460782.278822568], [2460782.2807239853, 2460782.2809476815], [2460782.2818424664, 2460782.282401707], [2460782.2828490995, 2460782.283296492], [2460782.2846386693, 2460782.2847505175], [2460782.285086062, 2460782.28519791], [2460782.2856453024, 2460782.2890007454], [2460782.2891125935, 2460782.2892244416], [2460782.2893362897, 2460782.290678467], [2460782.2909021634, 2460782.3112585186], [2460782.3113703667, 2460782.311482215], [2460782.311594063, 2460782.3132717847], [2460782.313383633, 2460782.3140547215], [2460782.3141665696, 2460782.3142784177], [2460782.3145021135, 2460782.3146139616], [2460782.3147258097, 2460782.314949506], [2460782.315061354, 2460782.3152850503], [2460782.3155087465, 2460782.3166272277], [2460782.316962772, 2460782.31707462], [2460782.3172983164, 2460782.317745709], [2460782.3193115825, 2460782.3195352787], [2460782.3205419113, 2460782.3206537594], [2460782.3208774556, 2460782.3209893038], [2460782.321101152, 2460782.321213], [2460782.3217722406, 2460782.322107785], [2460782.324009203, 2460782.325575076], [2460782.3270291016, 2460782.327476494], [2460782.3278120384, 2460782.328483127], [2460782.328594975, 2460782.330384545], [2460782.332621507, 2460782.3342992286], [2460782.337207279, 2460782.338213912], [2460782.3396679377, 2460782.340003482], [2460782.34425371, 2460782.3448129506], [2460782.3449247987, 2460782.3454840393], [2460782.3473854573, 2460782.3481683936], [2460782.3520830777, 2460782.35253047], [2460782.355662217, 2460782.3559977612], [2460782.366399635, 2460782.3667351794], [2460782.3704261673, 2460782.370761711], [2460782.3802688005, 2460782.380492497], [2460782.380828041, 2460782.3810517373], [2460782.383176851, 2460782.3834005473], [2460782.3877626234, 2460782.3878744715], [2460782.3969341684, 2460782.3971578646], [2460782.400848852, 2460782.4012962445], [2460782.4191919416, 2460782.419415638], [2460782.424784347, 2460782.425008043], [2460782.4274687013, 2460782.4275805494], [2460782.4294819674, 2460782.4295938155], [2460782.4297056636, 2460782.430153056], [2460782.441449715, 2460782.441561563], [2460782.441673411, 2460782.441785259], [2460782.4418971073, 2460782.4420089554], [2460782.4421208035, 2460782.4422326516], [2460782.443910373, 2460782.444134069], [2460782.452075285, 2460782.452187133], [2460782.4569966015, 2460782.457332146], [2460782.4576676902, 2460782.4578913865], [2460782.4612468295, 2460782.4613586776], [2460782.465608906, 2460782.465720754], [2460782.4713131594, 2460782.4714250076], [2460782.483616451, 2460782.483728299], [2460782.4870837424, 2460782.4873074386], [2460782.4894325524, 2460782.4896562486], [2460782.491893211, 2460782.492116907], [2460782.494018325, 2460782.4942420213], [2460782.5145983766, 2460782.514822073], [2460782.5166116427, 2460782.516723491], [2460782.5267898203, 2460782.5271253646], [2460782.5283556934, 2460782.5285793897], [2460782.5303689595, 2460782.5305926558], [2460782.530704504, 2460782.5309282], [2460782.5346191875, 2460782.5347310356], [2460782.5439025806, 2460782.5440144287], [2460782.544349973, 2460782.544461821], [2460782.5449092137, 2460782.5451329094], [2460782.5453566057, 2460782.5499423784], [2460782.5500542265, 2460782.550277923], [2460782.550389771, 2460782.5507253148], [2460782.550949011, 2460782.551060859], [2460782.551172707, 2460782.5515082516], [2460782.551731948, 2460782.56224567]] freq_flags: [[49911499.0234375, 50155639.6484375], [58822631.8359375, 58944702.1484375], [61996459.9609375, 63339233.3984375], [64071655.2734375, 64193725.5859375], [66146850.5859375, 66635131.8359375], [67001342.7734375, 67123413.0859375], [67245483.3984375, 67367553.7109375], [69931030.2734375, 70053100.5859375], [70541381.8359375, 70663452.1484375], [73471069.3359375, 73593139.6484375], [73959350.5859375, 75057983.3984375], [76644897.4609375, 76766967.7734375], [77255249.0234375, 78475952.1484375], [87265014.6484375, 108261108.3984375], [109970092.7734375, 110092163.0859375], [112655639.6484375, 113754272.4609375], [116195678.7109375, 117172241.2109375], [119979858.3984375, 120101928.7109375], [124862670.8984375, 125228881.8359375], [127548217.7734375, 127792358.3984375], [129989624.0234375, 130111694.3359375], [136093139.6484375, 136215209.9609375], [136337280.2734375, 136459350.5859375], [136703491.2109375, 138046264.6484375], [138534545.8984375, 138778686.5234375], [141464233.3984375, 141586303.7109375], [141708374.0234375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [142684936.5234375, 143417358.3984375], [143783569.3359375, 144027709.9609375], [144882202.1484375, 145004272.4609375], [145492553.7109375, 145614624.0234375], [146224975.5859375, 146347045.8984375], [147445678.7109375, 147567749.0234375], [149154663.0859375, 149276733.3984375], [149887084.9609375, 150009155.2734375], [154159545.8984375, 154403686.5234375], [155014038.0859375, 155136108.3984375], [155258178.7109375, 155380249.0234375], [157577514.6484375, 157699584.9609375], [158187866.2109375, 158309936.5234375], [158676147.4609375, 158798217.7734375], [159164428.7109375, 159286499.0234375], [160140991.2109375, 160385131.8359375], [169906616.2109375, 170150756.8359375], [170272827.1484375, 170394897.4609375], [170516967.7734375, 170639038.0859375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175399780.2734375], [181137084.9609375, 181381225.5859375], [183212280.2734375, 183334350.5859375], [186386108.3984375, 186508178.7109375], [187362670.8984375, 187606811.5234375], [189926147.4609375, 190048217.7734375], [190292358.3984375, 190414428.7109375], [190902709.9609375, 191757202.1484375], [193222045.8984375, 193832397.4609375], [193954467.7734375, 194198608.3984375], [196395874.0234375, 196517944.3359375], [196762084.9609375, 197006225.5859375], [197128295.8984375, 197372436.5234375], [197494506.8359375, 199081420.8984375], [199203491.2109375, 199325561.5234375], [199447631.8359375, 199691772.4609375], [199935913.0859375, 200057983.3984375], [200302124.0234375, 200424194.3359375], [200546264.6484375, 201034545.8984375], [201644897.4609375, 201889038.0859375], [203231811.5234375, 203353881.8359375], [204940795.8984375, 205062866.2109375], [205184936.5234375, 205307006.8359375], [206893920.8984375, 207015991.2109375], [207138061.5234375, 207626342.7734375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [215194702.1484375, 215316772.4609375], [220565795.8984375, 220809936.5234375], [222152709.9609375, 222396850.5859375], [222763061.5234375, 223739624.0234375], [224105834.9609375, 224227905.2734375], [227401733.3984375, 227523803.7109375], [227645874.0234375, 227767944.3359375], [227890014.6484375, 228012084.9609375], [229110717.7734375, 229354858.3984375], [229965209.9609375, 230087280.2734375], [231063842.7734375, 231185913.0859375]] ex_ants: [[3, Jee], [3, Jnn], [4, Jee], [4, Jnn], [5, Jee], [5, Jnn], [7, Jee], [7, Jnn], [8, Jee], [8, Jnn], [10, Jee], [10, Jnn], [15, Jnn], [18, Jee], [18, Jnn], [20, Jnn], [21, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jee], [30, Jee], [30, Jnn], [31, Jee], [32, Jnn], [33, Jnn], [34, Jee], [35, Jnn], [37, Jee], [37, Jnn], [40, Jnn], [42, Jee], [42, Jnn], [45, Jnn], [46, Jee], [47, Jnn], [49, Jnn], [51, Jee], [54, Jee], [56, Jee], [56, Jnn], [57, Jee], [60, Jnn], [62, Jee], [63, Jnn], [64, Jnn], [65, Jee], [66, Jee], [66, Jnn], [67, Jnn], [68, Jee], [68, Jnn], [70, Jee], [70, Jnn], [71, Jee], [71, Jnn], [72, Jee], [72, Jnn], [76, Jee], [76, Jnn], [78, Jee], [80, Jnn], [81, Jnn], [82, Jee], [82, Jnn], [86, Jee], [86, Jnn], [87, Jee], [89, Jee], [97, Jnn], [98, Jnn], [99, Jnn], [100, Jee], [100, Jnn], [102, Jnn], [104, Jnn], [105, Jee], [106, Jee], [107, Jee], [107, Jnn], [109, Jnn], [113, Jnn], [115, Jee], [115, Jnn], [116, Jee], [116, Jnn], [117, Jee], [119, Jee], [119, Jnn], [120, Jee], [121, Jee], [130, Jee], [130, Jnn], [134, Jnn], [135, Jee], [136, Jnn], [137, Jee], [137, Jnn], [140, Jee], [144, Jee], [144, Jnn], [148, Jee], [149, Jee], [149, Jnn], [153, Jnn], [154, Jnn], [155, Jnn], [159, Jee], [161, Jnn], [166, Jee], [166, Jnn], [167, Jnn], [170, Jee], [174, Jnn], [176, Jnn], [180, Jee], [180, Jnn], [184, Jee], [184, Jnn], [185, Jee], [185, Jnn], [186, Jee], [186, Jnn], [187, Jee], [195, Jnn], [197, Jnn], [199, Jnn], [200, Jee], [200, Jnn], [202, Jnn], [206, Jnn], [209, Jnn], [212, Jnn], [213, Jnn], [214, Jee], [214, Jnn], [218, Jnn], [227, Jee], [227, Jnn], [231, Jee], [231, Jnn], [232, Jee], [233, Jnn], [236, Jee], [236, Jnn], [238, Jnn], [239, Jee], [240, Jee], [240, Jnn], [244, Jee], [250, Jee], [250, Jnn], [251, Jee], [251, Jnn], [252, Jee], [252, Jnn], [253, Jee], [253, Jnn], [254, Jee], [254, Jnn], [255, Jee], [255, Jnn], [257, Jee], [257, Jnn], [262, Jee], [262, Jnn], [266, Jee], [266, Jnn], [267, Jee], [267, Jnn], [268, Jee], [268, Jnn], [269, Jee], [269, Jnn], [271, Jee], [271, Jnn], [273, Jee], [273, Jnn], [281, Jee], [281, Jnn], [282, Jee], [282, Jnn], [283, Jee], [283, Jnn], [284, Jee], [284, Jnn], [286, Jee], [286, Jnn], [287, Jee], [295, Jee], [295, Jnn], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [322, Jee], [322, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [326, Jee], [326, Jnn], [327, Jee], [327, Jnn], [328, Jee], [328, Jnn], [329, Jee], [329, Jnn], [331, Jee], [331, Jnn], [332, Jee], [332, Jnn], [333, Jee], [333, Jnn], [336, Jee], [336, Jnn], [340, Jee], [340, Jnn]]
Metadata¶
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.7.1.dev45+g4a0c6f1 hera_qm: 2.2.1.dev2+ga535e9e hera_filters: 0.1.6.dev9+gf165ec1
hera_notebook_templates: 0.1.dev989+gee0995d pyuvdata: 3.1.3
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 30.24 minutes.