Single File Calibration¶

by Josh Dillon, Aaron Parsons, Tyler Cox, and Zachary Martinot, last updated August 11, 2025

This notebook is designed to infer as much information about the array from a single file, including pushing the calibration and RFI mitigation as far as possible. Calibration includes redundant-baseline calibration, RFI-based calibration of delay slopes, model-based calibration of overall amplitudes, and a full per-frequency phase gradient absolute calibration if abscal model files are available.

Here's a set of links to skip to particular figures and tables:

• Figure 1: RFI Flagging¶

• Figure 2: Plot of autocorrelations with classifications¶

• Figure 3: Summary of antenna classifications prior to calibration¶

• Figure 4: Redundant calibration of a single baseline group¶

• Figure 5: Absolute calibration of redcal degeneracies¶

• Figure 6: Relative Phase Calibration¶

• Figure 7: chi^2 per antenna across the array¶

• Figure 8: Summary of antenna classifications after redundant calibration¶

• Table 1: Complete summary of per antenna classifications¶

In [1]:
import time
tstart = time.time()
!hostname
bigmem2.rtp.pvt
In [2]:
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin  # REQUIRED to have the compression plugins available
import numpy as np
from scipy import constants, interpolate
import copy
import glob
import re
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
pd.set_option('display.max_rows', 1000)
from uvtools.plot import plot_antpos, plot_antclass
from hera_qm import ant_metrics, ant_class, xrfi
from hera_cal import io, utils, redcal, apply_cal, datacontainer, abscal
from hera_filters import dspec
from hera_notebook_templates.data import DATA_PATH as HNBT_DATA
from IPython.display import display, HTML
import linsolve
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore')  # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
In [3]:
# this enables better memory management on linux
import ctypes
def malloc_trim():
    try:
        ctypes.CDLL('libc.so.6').malloc_trim(0) 
    except OSError:
        pass

Parse inputs and outputs¶

To use this notebook interactively, you will have to provide a sum filename path if none exists as an environment variable. All other parameters have reasonable default values.

In [4]:
# figure out whether to save results
SAVE_RESULTS = os.environ.get("SAVE_RESULTS", "TRUE").upper() == "TRUE"
SAVE_OMNIVIS_FILE = os.environ.get("SAVE_OMNIVIS_FILE", "FALSE").upper() == "TRUE"

# get infile names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459867/zen.2459867.46002.sum.uvh5' # If sum_file is not defined in the environment variables, define it here.
USE_DIFF = os.environ.get("USE_DIFF", "TRUE").upper() == "TRUE"
if USE_DIFF:
    DIFF_FILE = SUM_FILE.replace('sum', 'diff')
else:
    DIFF_FILE = None
    RTP_ANTCLASS = SUM_FILE.replace('.uvh5', '.rtp_ant_class.csv')
VALIDATION = os.environ.get("VALIDATION", "FALSE").upper() == "TRUE"

# get outfilenames
AM_FILE = (SUM_FILE.replace('.uvh5', '.ant_metrics.hdf5') if SAVE_RESULTS else None)
ANTCLASS_FILE = (SUM_FILE.replace('.uvh5', '.ant_class.csv') if SAVE_RESULTS else None)
OMNICAL_FILE = (SUM_FILE.replace('.uvh5', '.omni.calfits') if SAVE_RESULTS else None)
OMNIVIS_FILE = (SUM_FILE.replace('.uvh5', '.omni_vis.uvh5') if SAVE_RESULTS else None)

for fname in ['SUM_FILE', 'DIFF_FILE', 'AM_FILE', 'ANTCLASS_FILE', 'OMNICAL_FILE', 'OMNIVIS_FILE', 
              'SAVE_RESULTS', 'SAVE_OMNIVIS_FILE', 'USE_DIFF', 'VALIDATION']:
    print(f"{fname} = '{eval(fname)}'")
SUM_FILE = '/mnt/sn1/data1/2460951/zen.2460951.50977.sum.uvh5'
DIFF_FILE = '/mnt/sn1/data1/2460951/zen.2460951.50977.diff.uvh5'
AM_FILE = '/mnt/sn1/data1/2460951/zen.2460951.50977.sum.ant_metrics.hdf5'
ANTCLASS_FILE = '/mnt/sn1/data1/2460951/zen.2460951.50977.sum.ant_class.csv'
OMNICAL_FILE = '/mnt/sn1/data1/2460951/zen.2460951.50977.sum.omni.calfits'
OMNIVIS_FILE = '/mnt/sn1/data1/2460951/zen.2460951.50977.sum.omni_vis.uvh5'
SAVE_RESULTS = 'True'
SAVE_OMNIVIS_FILE = 'False'
USE_DIFF = 'True'
VALIDATION = 'False'

Parse settings¶

Load settings relating to the operation of the notebook, then print what was loaded (or default).

In [5]:
# parse plotting settings
PLOT = os.environ.get("PLOT", "TRUE").upper() == "TRUE"
if PLOT:
    %matplotlib inline

# parse omnical settings
OC_MAX_DIMS = int(os.environ.get("OC_MAX_DIMS", 4))
OC_MIN_DIM_SIZE = int(os.environ.get("OC_MIN_DIM_SIZE", 8))
OC_SKIP_OUTRIGGERS = os.environ.get("OC_SKIP_OUTRIGGERS", "TRUE").upper() == "TRUE"
OC_MIN_BL_LEN = float(os.environ.get("OC_MIN_BL_LEN", 1))
OC_MAX_BL_LEN = float(os.environ.get("OC_MAX_BL_LEN", 1e100))
OC_MAXITER = int(os.environ.get("OC_MAXITER", 50))
OC_MAX_RERUN = int(os.environ.get("OC_MAX_RERUN", 10))
OC_RERUN_MAXITER = int(os.environ.get("OC_MAXITER", 50))
OC_MAX_CHISQ_FLAGGING_DYNAMIC_RANGE = float(os.environ.get("OC_MAX_CHISQ_FLAGGING_DYNAMIC_RANGE", 1))
OC_USE_PRIOR_SOL = os.environ.get("OC_USE_PRIOR_SOL", "FALSE").upper() == "TRUE"
OC_PRIOR_SOL_FLAG_THRESH = float(os.environ.get("OC_PRIOR_SOL_FLAG_THRESH", .95))
OC_USE_GPU = os.environ.get("SAVE_RESULTS", "FALSE").upper() == "TRUE"

# parse RFI settings
RFI_DPSS_HALFWIDTH = float(os.environ.get("RFI_DPSS_HALFWIDTH", 300e-9))
RFI_NSIG = float(os.environ.get("RFI_NSIG", 4))

# parse abscal settings
ABSCAL_MODEL_FILES_GLOB = os.environ.get("ABSCAL_MODEL_FILES_GLOB", None)
ABSCAL_MIN_BL_LEN = float(os.environ.get("ABSCAL_MIN_BL_LEN", 1.0))
ABSCAL_MAX_BL_LEN = float(os.environ.get("ABSCAL_MAX_BL_LEN", 140.0))
CALIBRATE_CROSS_POLS = os.environ.get("CALIBRATE_CROSS_POLS", "FALSE").upper() == "TRUE"

# print settings
for setting in ['PLOT', 'OC_MAX_DIMS', 'OC_MIN_DIM_SIZE', 'OC_SKIP_OUTRIGGERS', 
                'OC_MIN_BL_LEN', 'OC_MAX_BL_LEN', 'OC_MAXITER', 'OC_MAX_RERUN', 'OC_RERUN_MAXITER', 
                'OC_MAX_CHISQ_FLAGGING_DYNAMIC_RANGE', 'OC_USE_PRIOR_SOL', 'OC_PRIOR_SOL_FLAG_THRESH', 
                'OC_USE_GPU', 'RFI_DPSS_HALFWIDTH', 'RFI_NSIG', 'ABSCAL_MODEL_FILES_GLOB', 
                'ABSCAL_MIN_BL_LEN', 'ABSCAL_MAX_BL_LEN', "CALIBRATE_CROSS_POLS"]:
    print(f'{setting} = {eval(setting)}')
PLOT = True
OC_MAX_DIMS = 4
OC_MIN_DIM_SIZE = 8
OC_SKIP_OUTRIGGERS = True
OC_MIN_BL_LEN = 1.0
OC_MAX_BL_LEN = 140.0
OC_MAXITER = 50
OC_MAX_RERUN = 10
OC_RERUN_MAXITER = 50
OC_MAX_CHISQ_FLAGGING_DYNAMIC_RANGE = 1.5
OC_USE_PRIOR_SOL = True
OC_PRIOR_SOL_FLAG_THRESH = 0.95
OC_USE_GPU = False
RFI_DPSS_HALFWIDTH = 3e-07
RFI_NSIG = 4.0
ABSCAL_MODEL_FILES_GLOB = None
ABSCAL_MIN_BL_LEN = 1.0
ABSCAL_MAX_BL_LEN = 140.0
CALIBRATE_CROSS_POLS = True

Parse bounds¶

Load settings related to classifying antennas as good, suspect, or bad, then print what was loaded (or default).

In [6]:
# ant_metrics bounds for low correlation / dead antennas
am_corr_bad = (0, float(os.environ.get("AM_CORR_BAD", 0.35)))
am_corr_suspect = (float(os.environ.get("AM_CORR_BAD", 0.35)), float(os.environ.get("AM_CORR_SUSPECT", 0.45)))

# ant_metrics bounds for cross-polarized antennas
am_xpol_bad = (-1, float(os.environ.get("AM_XPOL_BAD", -0.1)))
am_xpol_suspect = (float(os.environ.get("AM_XPOL_BAD", -0.1)), float(os.environ.get("AM_XPOL_SUSPECT", 0)))

# bounds on solar altitude (in degrees)
good_solar_altitude = (-90, float(os.environ.get("SUSPECT_SOLAR_ALTITUDE", 0)))
suspect_solar_altitude = (float(os.environ.get("SUSPECT_SOLAR_ALTITUDE", 0)), 90)

# bounds on zeros in spectra
good_zeros_per_eo_spectrum = (0, int(os.environ.get("MAX_ZEROS_PER_EO_SPEC_GOOD", 2)))
suspect_zeros_per_eo_spectrum = (0, int(os.environ.get("MAX_ZEROS_PER_EO_SPEC_SUSPECT", 8)))

# bounds on autocorrelation power
auto_power_good = (float(os.environ.get("AUTO_POWER_GOOD_LOW", 5)), float(os.environ.get("AUTO_POWER_GOOD_HIGH", 30)))
auto_power_suspect = (float(os.environ.get("AUTO_POWER_SUSPECT_LOW", 1)), float(os.environ.get("AUTO_POWER_SUSPECT_HIGH", 60)))

# bounds on autocorrelation slope
auto_slope_good = (float(os.environ.get("AUTO_SLOPE_GOOD_LOW", -0.4)), float(os.environ.get("AUTO_SLOPE_GOOD_HIGH", 0.4)))
auto_slope_suspect = (float(os.environ.get("AUTO_SLOPE_SUSPECT_LOW", -0.6)), float(os.environ.get("AUTO_SLOPE_SUSPECT_HIGH", 0.6)))

# bounds on autocorrelation RFI
auto_rfi_good = (0, float(os.environ.get("AUTO_RFI_GOOD", 1.5)))
auto_rfi_suspect = (0, float(os.environ.get("AUTO_RFI_SUSPECT", 2)))

# bounds on autocorrelation shape
auto_shape_good = (0, float(os.environ.get("AUTO_SHAPE_GOOD", 0.1)))
auto_shape_suspect = (0, float(os.environ.get("AUTO_SHAPE_SUSPECT", 0.2)))

# bound on per-xengine non-noiselike power in diff
bad_xengine_zcut = float(os.environ.get("BAD_XENGINE_ZCUT", 10.0))

# bounds on chi^2 per antenna in omnical
oc_cspa_good = (0, float(os.environ.get("OC_CSPA_GOOD", 2)))
oc_cspa_suspect = (0, float(os.environ.get("OC_CSPA_SUSPECT", 3)))

# print bounds
for bound in ['am_corr_bad', 'am_corr_suspect', 'am_xpol_bad', 'am_xpol_suspect', 
              'good_solar_altitude', 'suspect_solar_altitude',
              'good_zeros_per_eo_spectrum', 'suspect_zeros_per_eo_spectrum',
              'auto_power_good', 'auto_power_suspect', 'auto_slope_good', 'auto_slope_suspect',
              'auto_rfi_good', 'auto_rfi_suspect', 'auto_shape_good', 'auto_shape_suspect',
              'bad_xengine_zcut', 'oc_cspa_good', 'oc_cspa_suspect']:
    print(f'{bound} = {eval(bound)}')
am_corr_bad = (0, 0.35)
am_corr_suspect = (0.35, 0.45)
am_xpol_bad = (-1, -0.1)
am_xpol_suspect = (-0.1, 0.0)
good_solar_altitude = (-90, 0.0)
suspect_solar_altitude = (0.0, 90)
good_zeros_per_eo_spectrum = (0, 2)
suspect_zeros_per_eo_spectrum = (0, 8)
auto_power_good = (5.0, 30.0)
auto_power_suspect = (1.0, 60.0)
auto_slope_good = (-0.4, 0.4)
auto_slope_suspect = (-0.6, 0.6)
auto_rfi_good = (0, 1.5)
auto_rfi_suspect = (0, 2.0)
auto_shape_good = (0, 0.1)
auto_shape_suspect = (0, 0.2)
bad_xengine_zcut = 10.0
oc_cspa_good = (0, 2.0)
oc_cspa_suspect = (0, 3.0)

Load sum and diff data¶

In [7]:
read_start = time.time()
hd = io.HERADataFastReader(SUM_FILE)
data, _, _ = hd.read(read_flags=False, read_nsamples=False)
if USE_DIFF:
    hd_diff = io.HERADataFastReader(DIFF_FILE)
    diff_data, _, _ = hd_diff.read(read_flags=False, read_nsamples=False, dtype=np.complex64, fix_autos_func=np.real)
print(f'Finished loading data in {(time.time() - read_start) / 60:.2f} minutes.')
Finished loading data in 0.54 minutes.
In [8]:
ants = sorted(set([ant for bl in hd.bls for ant in utils.split_bl(bl)]))
auto_bls = [bl for bl in data if (bl[0] == bl[1]) and (utils.split_pol(bl[2])[0] == utils.split_pol(bl[2])[1])]
antpols = sorted(set([ant[1] for ant in ants]))
In [9]:
# print basic information about the file
print(f'File: {SUM_FILE}')
print(f'JDs: {hd.times} ({np.median(np.diff(hd.times)) * 24 * 3600:.5f} s integrations)')
print(f'LSTS: {hd.lsts * 12 / np.pi } hours')
print(f'Frequencies: {len(hd.freqs)} {np.median(np.diff(hd.freqs)) / 1e6:.5f} MHz channels from {hd.freqs[0] / 1e6:.5f} to {hd.freqs[-1] / 1e6:.5f} MHz')
print(f'Antennas: {len(hd.data_ants)}')
print(f'Polarizations: {hd.pols}')
File: /mnt/sn1/data1/2460951/zen.2460951.50977.sum.uvh5
JDs: [2460951.50971362 2460951.50982546] (9.66368 s integrations)
LSTS: [2.45924043 2.46193213] hours
Frequencies: 1536 0.12207 MHz channels from 46.92078 to 234.29871 MHz
Antennas: 299
Polarizations: ['nn', 'ee', 'ne', 'en']

Classify good, suspect, and bad antpols¶

In [10]:
ALL_FLAGGED = False
def all_flagged():
    if ALL_FLAGGED:
        print('All antennas are flagged, so this cell is being skipped.')
    return ALL_FLAGGED

# initialize classes to None to help make Table 1 when everything is flagged
overall_class = None
am_totally_dead = None
am_corr = None
am_xpol = None
solar_class = None
zeros_class = None
auto_power_class = None
auto_slope_class = None
auto_rfi_class = None
auto_shape_class = None
xengine_diff_class = None
meta = None
redcal_class = None 

Load classifications that use diffs if diffs are not available¶

In [11]:
if not USE_DIFF:
    def read_antenna_classification(df, category):
        ac = ant_class.AntennaClassification()
        ac._data = {}
        for antname, class_data, antclass in zip(df['Antenna'], df[category], df[f'{category} Class']):
            try:        
                class_data = float(class_data)
            except:
                pass
            if isinstance(class_data, str) or np.isfinite(class_data):
                ant = (int(antname[:-1]), utils._comply_antpol(antname[-1]))
                ac[ant] = antclass
                ac._data[ant] = class_data
        return ac

    df = pd.read_csv(RTP_ANTCLASS)
    am_totally_dead = read_antenna_classification(df, 'Dead?')
    am_corr = read_antenna_classification(df, 'Low Correlation')
    am_xpol = read_antenna_classification(df, 'Cross-Polarized')
    zeros_class = read_antenna_classification(df, 'Even/Odd Zeros')
    xengine_diff_class = read_antenna_classification(df, 'Bad Diff X-Engines')

Run ant_metrics¶

This classifies antennas as cross-polarized, low-correlation, or dead. Such antennas are excluded from any calibration.

In [12]:
if USE_DIFF:
    am = ant_metrics.AntennaMetrics(SUM_FILE, DIFF_FILE, sum_data=data, diff_data=diff_data)
    am.iterative_antenna_metrics_and_flagging(crossCut=am_xpol_bad[1], deadCut=am_corr_bad[1])
    am.all_metrics = {}  # this saves time and disk by getting rid of per-iteration information we never use
    if SAVE_RESULTS:
        am.save_antenna_metrics(AM_FILE, overwrite=True)
In [13]:
if USE_DIFF:
    # Turn ant metrics into classifications
    totally_dead_ants = [ant for ant, i in am.xants.items() if i == -1]
    am_totally_dead = ant_class.AntennaClassification(good=[ant for ant in ants if ant not in totally_dead_ants], bad=totally_dead_ants)
    am_corr = ant_class.antenna_bounds_checker(am.final_metrics['corr'], bad=[am_corr_bad], suspect=[am_corr_suspect], good=[(0, 1)])
    am_xpol = ant_class.antenna_bounds_checker(am.final_metrics['corrXPol'], bad=[am_xpol_bad], suspect=[am_xpol_suspect], good=[(-1, 1)])
ant_metrics_class = am_totally_dead + am_corr + am_xpol
if np.all([ant_metrics_class[utils.split_bl(bl)[0]] == 'bad' for bl in auto_bls]):
    ALL_FLAGGED = True
    print('All antennas are flagged for ant_metrics.')

Mark sun-up (or high solar altitude) data as suspect¶

In [14]:
min_sun_alt = np.min(utils.get_sun_alt(hd.times))
solar_class = ant_class.antenna_bounds_checker({ant: min_sun_alt for ant in ants}, good=[good_solar_altitude], suspect=[suspect_solar_altitude])

Classify antennas responsible for 0s in visibilities as bad:¶

This classifier looks for X-engine failure or packet loss specific to an antenna which causes either the even visibilities (or the odd ones, or both) to be 0s.

In [15]:
if USE_DIFF:
    zeros_class = ant_class.even_odd_zeros_checker(data, diff_data, good=good_zeros_per_eo_spectrum, suspect=suspect_zeros_per_eo_spectrum)
if np.all([zeros_class[utils.split_bl(bl)[0]] == 'bad' for bl in auto_bls]):
    ALL_FLAGGED = True
    print('All antennas are flagged for too many even/odd zeros.')
All antennas are flagged for too many even/odd zeros.

Examine and classify autocorrelation power and slope¶

These classifiers look for antennas with too high or low power or to steep a slope.

In [16]:
auto_power_class = ant_class.auto_power_checker(data, good=auto_power_good, suspect=auto_power_suspect)
auto_slope_class = ant_class.auto_slope_checker(data, good=auto_slope_good, suspect=auto_slope_suspect, edge_cut=100, filt_size=17)
if np.all([(auto_power_class + auto_slope_class)[utils.split_bl(bl)[0]] == 'bad' for bl in auto_bls]):
    ALL_FLAGGED = True
    print('All antennas are flagged for bad autocorrelation power/slope.')
overall_class = auto_power_class + auto_slope_class + zeros_class + ant_metrics_class + solar_class

Find starting set of array flags¶

In [17]:
if not all_flagged():
    antenna_flags, array_flags = xrfi.flag_autos(data, flag_method="channel_diff_flagger", nsig=RFI_NSIG * 5, 
                                                 antenna_class=overall_class, flag_broadcast_thresh=.5)
    for key in antenna_flags:
        antenna_flags[key] = array_flags
    cache = {}
    _, array_flags = xrfi.flag_autos(data, freqs=data.freqs, flag_method="dpss_flagger",
                                     nsig=RFI_NSIG, antenna_class=overall_class,
                                     filter_centers=[0], filter_half_widths=[RFI_DPSS_HALFWIDTH],
                                     eigenval_cutoff=[1e-9], flags=antenna_flags, mode='dpss_matrix', 
                                     cache=cache, flag_broadcast_thresh=.5)
All antennas are flagged, so this cell is being skipped.

Classify antennas based on non-noiselike diffs¶

In [18]:
if not all_flagged():
    if USE_DIFF:
        xengine_diff_class = ant_class.non_noiselike_diff_by_xengine_checker(data, diff_data, flag_waterfall=array_flags, 
                                                                             antenna_class=overall_class, 
                                                                             xengine_chans=96, bad_xengine_zcut=bad_xengine_zcut)
        
        if np.all([overall_class[utils.split_bl(bl)[0]] == 'bad' for bl in auto_bls]):
            ALL_FLAGGED = True
            print('All antennas are flagged after flagging non-noiselike diffs.')
    overall_class += xengine_diff_class
All antennas are flagged, so this cell is being skipped.

Examine and classify autocorrelation excess RFI and shape, finding consensus RFI mask along the way¶

This classifier iteratively identifies antennas for excess RFI (characterized by RMS of DPSS-filtered autocorrelations after RFI flagging) and bad shape, as determined by a discrepancy with the mean good normalized autocorrelation's shape. Along the way, it iteratively discovers a conensus array-wide RFI mask.

In [19]:
def auto_bl_zscores(data, flag_array, cache={}):
    '''This function computes z-score arrays for each delay-filtered autocorrelation, normalized by the expected noise. 
    Flagged times/channels for the whole array are given 0 weight in filtering and are np.nan in the z-score.'''
    zscores = {}
    for bl in auto_bls:
        wgts = np.array(np.logical_not(flag_array), dtype=np.float64)
        model, _, _ = dspec.fourier_filter(hd.freqs, data[bl], wgts, filter_centers=[0], filter_half_widths=[RFI_DPSS_HALFWIDTH], mode='dpss_solve',
                                            suppression_factors=[1e-9], eigenval_cutoff=[1e-9], cache=cache)
        res = data[bl] - model
        int_time = 24 * 3600 * np.median(np.diff(data.times))
        chan_res = np.median(np.diff(data.freqs))
        int_count = int(int_time * chan_res)
        sigma = np.abs(model) / np.sqrt(int_count / 2)
        zscores[bl] = res / sigma    
        zscores[bl][flag_array] = np.nan

    return zscores
In [20]:
def rfi_from_avg_autos(data, auto_bls_to_use, prior_flags=None, nsig=RFI_NSIG):
    '''Average together all baselines in auto_bls_to_use, then find an RFI mask by looking for outliers after DPSS filtering.'''
    
    # If there are no good autos, return 100% flagged
    if len(auto_bls_to_use) == 0:
        return np.ones(data[next(iter(data))].shape, dtype=bool)
    
    # Compute int_count for all unflagged autocorrelations averaged together
    int_time = 24 * 3600 * np.median(np.diff(data.times_by_bl[auto_bls[0][0:2]]))
    chan_res = np.median(np.diff(data.freqs))
    int_count = int(int_time * chan_res) * len(auto_bls_to_use)
    avg_auto = {(-1, -1, 'ee'): np.mean([data[bl] for bl in auto_bls_to_use], axis=0)}
    
    # Flag RFI first with channel differences and then with DPSS
    antenna_flags, _ = xrfi.flag_autos(avg_auto, int_count=int_count, nsig=(nsig * 5))
    if prior_flags is not None:
        antenna_flags[(-1, -1, 'ee')] = prior_flags
    _, rfi_flags = xrfi.flag_autos(avg_auto, int_count=int_count, flag_method='dpss_flagger',
                                   flags=antenna_flags, freqs=data.freqs, filter_centers=[0],
                                   filter_half_widths=[RFI_DPSS_HALFWIDTH], eigenval_cutoff=[1e-9], nsig=nsig)

    return rfi_flags
In [21]:
# Iteratively develop RFI mask, excess RFI classification, and autocorrelation shape classification
if not all_flagged():
    stage = 1
    rfi_flags = np.array(array_flags)
    prior_end_states = set()
    while True:
        # compute DPSS-filtered z-scores with current array-wide RFI mask
        zscores = auto_bl_zscores(data, rfi_flags)
        rms = {bl: np.nanmean(zscores[bl]**2)**.5 if np.any(np.isfinite(zscores[bl])) else np.inf for bl in zscores}
        
        # figure out which autos to use for finding new set of flags
        candidate_autos = [bl for bl in auto_bls if overall_class[utils.split_bl(bl)[0]] != 'bad']
        if stage == 1:
            # use best half of the unflagged antennas
            med_rms = np.nanmedian([rms[bl] for bl in candidate_autos])
            autos_to_use = [bl for bl in candidate_autos if rms[bl] <= med_rms]
        elif stage == 2:
            # use all unflagged antennas which are auto RFI good, or the best half, whichever is larger
            med_rms = np.nanmedian([rms[bl] for bl in candidate_autos])
            best_half_autos = [bl for bl in candidate_autos if rms[bl] <= med_rms]
            good_autos = [bl for bl in candidate_autos if (overall_class[utils.split_bl(bl)[0]] != 'bad')
                          and (auto_rfi_class[utils.split_bl(bl)[0]] == 'good')]
            autos_to_use = (best_half_autos if len(best_half_autos) > len(good_autos) else good_autos)
        elif stage == 3:
            # use all unflagged antennas which are auto RFI good or suspect
            autos_to_use = [bl for bl in candidate_autos if (overall_class[utils.split_bl(bl)[0]] != 'bad')]
    
        # compute new RFI flags
        rfi_flags = rfi_from_avg_autos(data, autos_to_use)
    
        # perform auto shape and RFI classification
        overall_class = auto_power_class + auto_slope_class + zeros_class + ant_metrics_class + solar_class + xengine_diff_class
        auto_rfi_class = ant_class.antenna_bounds_checker(rms, good=auto_rfi_good, suspect=auto_rfi_suspect, bad=(0, np.inf))
        overall_class += auto_rfi_class
        auto_shape_class = ant_class.auto_shape_checker(data, good=auto_shape_good, suspect=auto_shape_suspect,
                                                        flag_spectrum=np.sum(rfi_flags, axis=0).astype(bool), 
                                                        antenna_class=overall_class)
        overall_class += auto_shape_class
        
        # check for convergence by seeing whether we've previously gotten to this number of flagged antennas and channels
        if stage == 3:
            if (len(overall_class.bad_ants), np.sum(rfi_flags)) in prior_end_states:
                break
            prior_end_states.add((len(overall_class.bad_ants), np.sum(rfi_flags)))
        else:
            stage += 1
All antennas are flagged, so this cell is being skipped.
In [22]:
auto_class = auto_power_class + auto_slope_class
if auto_rfi_class is not None:
    auto_class += auto_rfi_class
if auto_shape_class is not None:
    auto_class += auto_rfi_class
if np.all([overall_class[utils.split_bl(bl)[0]] == 'bad' for bl in auto_bls]):
    ALL_FLAGGED = True
    print('All antennas are flagged after flagging for bad autos power/slope/rfi/shape.')
All antennas are flagged after flagging for bad autos power/slope/rfi/shape.
In [23]:
if not all_flagged():
    def rfi_plot(cls, flags=rfi_flags):
        avg_auto = {(-1, -1, 'ee'): np.mean([data[bl] for bl in auto_bls if not cls[utils.split_bl(bl)[0]] == 'bad'], axis=0)}
        plt.figure(figsize=(12, 5), dpi=100)
        plt.semilogy(hd.freqs / 1e6, np.where(flags, np.nan, avg_auto[(-1, -1, 'ee')])[0], label = 'Average Good or Suspect Autocorrelation', zorder=100)
        plt.semilogy(hd.freqs / 1e6, np.where(False, np.nan, avg_auto[(-1, -1, 'ee')])[0], 'r', lw=.5, label=f'{np.sum(flags[0])} Channels Flagged for RFI')
        plt.legend()
        plt.xlabel('Frequency (MHz)')
        plt.ylabel('Uncalibrated Autocorrelation')
        plt.tight_layout()
All antennas are flagged, so this cell is being skipped.

Figure 1: RFI Flagging¶

This figure shows RFI identified using the average of all autocorrelations---excluding bad antennas---for the first integration in the file.

In [24]:
if PLOT and not all_flagged(): rfi_plot(overall_class)
All antennas are flagged, so this cell is being skipped.
In [25]:
def autocorr_plot(cls):    
    fig, axes = plt.subplots(1, 2, figsize=(14, 5), dpi=100, sharey=True, gridspec_kw={'wspace': 0})
    labels = []
    colors = ['darkgreen', 'goldenrod', 'maroon']
    for ax, pol in zip(axes, antpols):
        for ant in cls.ants:
            if ant[1] == pol:
                color = colors[cls.quality_classes.index(cls[ant])]
                ax.semilogy(np.mean(data[utils.join_bl(ant, ant)], axis=0), color=color, lw=.5)
        ax.set_xlabel('Channel', fontsize=12)
        ax.set_title(f'{utils.join_pol(pol, pol)}-Polarized Autos')

    axes[0].set_ylabel('Raw Autocorrelation', fontsize=12)
    axes[1].legend([matplotlib.lines.Line2D([0], [0], color=color) for color in colors], 
                   [cl.capitalize() for cl in cls.quality_classes], ncol=1, fontsize=12, loc='upper right', framealpha=1)
    plt.tight_layout()

Figure 2: Plot of autocorrelations with classifications¶

This figure shows a plot of all autocorrelations in the array, split by polarization. Antennas are classified based on their autocorrelations into good, suspect, and bad, by examining power, slope, and RFI-occupancy.

In [26]:
if PLOT and not all_flagged(): autocorr_plot(auto_class)
All antennas are flagged, so this cell is being skipped.

Summarize antenna classification prior to redundant-baseline calibration¶

In [27]:
def array_class_plot(cls, extra_label=""):
    outriggers = [ant for ant in hd.data_ants if ant >= 320]

    if len(outriggers) > 0:
        fig, axes = plt.subplots(1, 2, figsize=(14, 6), dpi=100, gridspec_kw={'width_ratios': [2, 1]})
        plot_antclass(hd.antpos, cls, ax=axes[0], ants=[ant for ant in hd.data_ants if ant < 320], legend=False, title=f'HERA Core{extra_label}')
        plot_antclass(hd.antpos, cls, ax=axes[1], ants=outriggers, radius=50, title='Outriggers')
    else:
        fig, axes = plt.subplots(1, 1, figsize=(9, 6), dpi=100)
        plot_antclass(hd.antpos, cls, ax=axes, ants=[ant for ant in hd.data_ants if ant < 320], legend=False, title=f'HERA Core{extra_label}')

Figure 3: Summary of antenna classifications prior to calibration¶

This figure shows the location and classification of all antennas prior to calibration. Antennas are split along the diagonal, with ee-polarized antpols represented by the southeast half of each antenna and nn-polarized antpols represented by the northwest half. Outriggers are split from the core and shown at exaggerated size in the right-hand panel. This classification includes ant_metrics, a count of the zeros in the even or odd visibilities, and autocorrelation power, slope, and RFI occupancy. An antenna classified as bad in any classification will be considered bad. An antenna marked as suspect any in any classification will be considered suspect unless it is also classified as bad elsewhere.

In [28]:
if PLOT and not all_flagged(): array_class_plot(overall_class)
All antennas are flagged, so this cell is being skipped.
In [29]:
# delete diffs to save memory
if USE_DIFF:
    del diff_data, hd_diff
try:
    del cache
except NameError:
    pass
malloc_trim()

Perform redundant-baseline calibration¶

In [30]:
def classify_off_grid(reds, all_ants):
    '''Returns AntennaClassification of all_ants where good ants are in reds while bad ants are not.'''
    ants_in_reds = set([ant for red in reds for bl in red for ant in utils.split_bl(bl)])
    on_grid = [ant for ant in all_ants if ant in ants_in_reds]
    off_grid = [ant for ant in all_ants if ant not in ants_in_reds]
    return ant_class.AntennaClassification(good=on_grid, bad=off_grid)
In [31]:
def per_pol_filter_reds(reds, pols=['nn', 'ee'], **kwargs):
    '''Performs redcal filtering separately on polarizations (which might have different min_dim_size issues).'''
    return [red for pol in pols for red in redcal.filter_reds(copy.deepcopy(reds), pols=[pol], **kwargs)]
In [32]:
def check_if_whole_pol_flagged(redcal_class, pols=['Jee', 'Jnn']):
    '''Checks if an entire polarization is flagged. If it is, returns True and marks all antennas as bad in redcal_class.'''
    if np.logical_or(*[np.all([redcal_class[ant] == 'bad' for ant in redcal_class.ants if ant[1] == pol]) for pol in pols]):
        print('An entire polarization has been flagged. Stopping redcal.')
        for ant in redcal_class:
            redcal_class[ant] = 'bad'
        return True
    return False
In [33]:
def recheck_chisq(cspa, sol, cutoff, avg_alg):
    '''Recompute chisq per ant without apparently bad antennas to see if any antennas get better.'''
    avg_cspa = {ant: avg_alg(np.where(rfi_flags, np.nan, cspa[ant])) for ant in cspa}
    sol2 = redcal.RedSol(sol.reds, gains={ant: sol[ant] for ant in avg_cspa if avg_cspa[ant] <= cutoff}, vis=sol.vis)
    new_chisq_per_ant = {ant: np.array(cspa[ant]) for ant in sol2.gains}
    if len(set([bl[2] for red in per_pol_filter_reds(sol2.reds, ants=sol2.gains.keys(), antpos=hd.data_antpos, **fr_settings) for bl in red])) >= 2:
        redcal.expand_omni_gains(sol2, sol2.reds, data, chisq_per_ant=new_chisq_per_ant)
    for ant in avg_cspa:
        if ant in new_chisq_per_ant:
            if np.any(np.isfinite(new_chisq_per_ant[ant])):
                if not np.all(np.isclose(new_chisq_per_ant[ant], 0)):
                    new_avg_cspa = avg_alg(np.where(rfi_flags, np.nan, cspa[ant]))
                    if new_avg_cspa > 0:
                        avg_cspa[ant] = np.min([avg_cspa[ant], new_avg_cspa])
    return avg_cspa

Perform iterative redcal¶

In [34]:
# figure out and filter reds and classify antennas based on whether or not they are on the main grid
if not all_flagged():
    fr_settings = {'max_dims': OC_MAX_DIMS, 'min_dim_size': OC_MIN_DIM_SIZE, 'min_bl_cut': OC_MIN_BL_LEN, 'max_bl_cut': OC_MAX_BL_LEN}
    reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol', bl_error_tol=2.0)
    reds = per_pol_filter_reds(reds, ex_ants=overall_class.bad_ants, antpos=hd.data_antpos, **fr_settings)
    if OC_SKIP_OUTRIGGERS:
        reds = redcal.filter_reds(reds, ex_ants=[ant for ant in ants if ant[0] >= 320])
    redcal_class = classify_off_grid(reds, ants)
All antennas are flagged, so this cell is being skipped.
In [35]:
if OC_USE_PRIOR_SOL and not all_flagged():
    # Find closest omnical file
    omnical_files = sorted(glob.glob('.'.join(OMNICAL_FILE.split('.')[:-5]) + '.*.' + '.'.join(OMNICAL_FILE.split('.')[-3:])))
    if len(omnical_files) == 0:
        OC_USE_PRIOR_SOL = False
    else:
        omnical_jds = np.array([float(re.findall("\d+\.\d+", ocf)[-1]) for ocf in omnical_files])
        closest_omnical = omnical_files[np.argmin(np.abs(omnical_jds - data.times[0]))]

        # Load closest omnical file and use it if the antenna flagging is not too dissimilar
        hc = io.HERACal(closest_omnical)
        prior_gains, prior_flags, _, _ = hc.read()
        not_bad_not_prior_flagged = [ant for ant in overall_class if not ant in redcal_class.bad_ants and not np.all(prior_flags[ant])]
        if (len(redcal_class.bad_ants) == len(redcal_class.ants)):
            OC_USE_PRIOR_SOL = False  # all antennas flagged
        elif (len(not_bad_not_prior_flagged) / (len(redcal_class.ants) - len(redcal_class.bad_ants))) < OC_PRIOR_SOL_FLAG_THRESH:
            OC_USE_PRIOR_SOL = False  # too many antennas unflaged that were flagged in the prior sol
        else:
            print(f'Using {closest_omnical} as a starting point for redcal.')
All antennas are flagged, so this cell is being skipped.
In [36]:
if not all_flagged():
    redcal_start = time.time()
    rc_settings = {'oc_conv_crit': 1e-10, 'gain': 0.4, 'run_logcal': False,
                   'oc_maxiter': OC_MAXITER, 'check_after': OC_MAXITER, 'use_gpu': OC_USE_GPU}
    
    if check_if_whole_pol_flagged(redcal_class):
        # skip redcal, initialize empty sol and meta 
        sol = redcal.RedSol(reds)
        meta = {'chisq': None, 'chisq_per_ant': None}
    else:    
        if OC_USE_PRIOR_SOL:
            # use prior unflagged gains and data to create starting point for next step
            sol = redcal.RedSol(reds=reds, gains={ant: prior_gains[ant] for ant in not_bad_not_prior_flagged})
            reds_to_update = [[bl for bl in red if (utils.split_bl(bl)[0] in sol.gains) and (utils.split_bl(bl)[1] in sol.gains)] for red in reds]
            reds_to_update = [red for red in reds_to_update if len(red) > 0]
            sol.update_vis_from_data(data, reds_to_update=reds_to_update)
            redcal.expand_omni_gains(sol, reds, data)
            sol.update_vis_from_data(data)
        else:
            # perform first stage of redundant calibration 
            meta, sol = redcal.redundantly_calibrate(data, reds, max_dims=None, **rc_settings)
            max_dly = np.max(np.abs(list(meta['fc_meta']['dlys'].values())))  # Needed for RFI delay-slope cal
            median_cspa = recheck_chisq(meta['chisq_per_ant'], sol, oc_cspa_suspect[1] * 5, np.nanmedian)
             # remove particularly bad antennas (5x the bound on median, not mean)
            cspa_class = ant_class.antenna_bounds_checker(median_cspa, good=(oc_cspa_good[0], oc_cspa_suspect[1] * 5), bad=[(-np.inf, np.inf)])
            redcal_class += cspa_class
            print(f'Removing {cspa_class.bad_ants} for >5x high median chi^2.')
            for ant in cspa_class.bad_ants:
                print(f'\t{ant}: {median_cspa[ant]:.3f}')
            
        malloc_trim()
All antennas are flagged, so this cell is being skipped.
In [37]:
if not all_flagged():
    # iteratively rerun redundant calibration
    redcal_done = False
    rc_settings['oc_maxiter'] = rc_settings['check_after'] = OC_RERUN_MAXITER
    for i in range(OC_MAX_RERUN + 1):
        # refilter reds and update classification to reflect new off-grid ants, if any
        reds = per_pol_filter_reds(reds, ex_ants=(overall_class + redcal_class).bad_ants, antpos=hd.data_antpos, **fr_settings)
        reds = sorted(reds, key=len, reverse=True)
        redcal_class += classify_off_grid(reds, ants)
        
        # check to see whether we're done
        if check_if_whole_pol_flagged(redcal_class) or redcal_done or (i == OC_MAX_RERUN):
            break
    
        # re-run redundant calibration using previous solution, updating bad and suspicious antennas
        meta, sol = redcal.redundantly_calibrate(data, reds, sol0=sol, max_dims=None, **rc_settings)
        malloc_trim()
        
        # recompute chi^2 for bad antennas without bad antennas to make sure they are actually bad
        mean_cspa = recheck_chisq(meta['chisq_per_ant'], sol, oc_cspa_suspect[1], np.nanmean)
        
        # remove bad antennas
        cspa_class = ant_class.antenna_bounds_checker(mean_cspa, good=oc_cspa_good, suspect=oc_cspa_suspect, bad=[(-np.inf, np.inf)])
        for ant in cspa_class.bad_ants:
            if mean_cspa[ant] < np.max(list(mean_cspa.values())) / OC_MAX_CHISQ_FLAGGING_DYNAMIC_RANGE:
                cspa_class[ant] = 'suspect'  # reclassify as suspect if they are much better than the worst antennas
        redcal_class += cspa_class
        print(f'Removing {cspa_class.bad_ants} for high mean unflagged chi^2.')
        for ant in cspa_class.bad_ants:
            print(f'\t{ant}: {mean_cspa[ant]:.3f}')
    
        if len(cspa_class.bad_ants) == 0:
            redcal_done = True  # no new antennas to flag
    
    print(f'Finished redcal in {(time.time() - redcal_start) / 60:.2f} minutes.')
    overall_class += redcal_class
All antennas are flagged, so this cell is being skipped.

Expand solution to include calibratable baselines excluded from redcal (e.g. because they were too long)¶

In [38]:
if not all_flagged():
    expanded_reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol', bl_error_tol=2.0)
    expanded_reds = per_pol_filter_reds(expanded_reds, ex_ants=(ant_metrics_class + solar_class + zeros_class + auto_class + xengine_diff_class).bad_ants,
                                        max_dims=OC_MAX_DIMS, min_dim_size=OC_MIN_DIM_SIZE)
    if OC_SKIP_OUTRIGGERS:
        expanded_reds = redcal.filter_reds(expanded_reds, ex_ants=[ant for ant in ants if ant[0] >= 320])
    if len(sol.gains) > 0:
        redcal.expand_omni_vis(sol, expanded_reds, data, chisq=meta['chisq'], chisq_per_ant=meta['chisq_per_ant'])
All antennas are flagged, so this cell is being skipped.
In [39]:
if not all_flagged():
    # now figure out flags, nsamples etc.
    omni_flags = {ant: (~np.isfinite(g)) | (ant in overall_class.bad_ants) for ant, g in sol.gains.items()}
    vissol_flags = datacontainer.RedDataContainer({bl: ~np.isfinite(v) for bl, v in sol.vis.items()}, reds=sol.vis.reds)
    single_nsamples_array = np.ones((len(hd.times), len(hd.freqs)), dtype=float)
    nsamples = datacontainer.DataContainer({bl: single_nsamples_array for bl in data})
    vissol_nsamples = redcal.count_redundant_nsamples(nsamples, [red for red in expanded_reds if red[0] in vissol_flags], 
                                                      good_ants=[ant for ant in overall_class if ant not in overall_class.bad_ants])
    for bl in vissol_flags:
        vissol_flags[bl][vissol_nsamples[bl] == 0] = True
    sol.make_sol_finite()
All antennas are flagged, so this cell is being skipped.

Fix the firstcal delay slope degeneracy using RFI transmitters¶

In [40]:
if not OC_USE_PRIOR_SOL and not all_flagged():
    # find channels clearly contaminated by RFI
    not_bad_ants = [ant for ant in overall_class.ants if (overall_class[ant] != 'bad') and (utils.join_bl(ant, ant) in data)]
    if len(not_bad_ants) > 0:
        chan_flags = np.mean([xrfi.detrend_medfilt(data[utils.join_bl(ant, ant)], Kf=8, Kt=2) for ant in not_bad_ants], axis=(0, 1)) > 5

        # hardcoded RFI transmitters and their headings
        # channel: frequency (Hz), heading (rad), chi^2
        phs_sol = {359: ( 90744018.5546875, 0.7853981, 23.3),
                   360: ( 90866088.8671875, 0.7853981, 10.8),
                   385: ( 93917846.6796875, 0.7853981, 27.3),
                   386: ( 94039916.9921875, 0.7853981, 18.1),
                   400: ( 95748901.3671875, 6.0632738, 24.0),
                   441: (100753784.1796875, 0.7853981, 21.7),
                   442: (100875854.4921875, 0.7853981, 19.4),
                   455: (102462768.5546875, 6.0632738, 18.8),
                   456: (102584838.8671875, 6.0632738,  8.8),
                   471: (104415893.5546875, 0.7853981, 13.3),
                   484: (106002807.6171875, 6.0632738, 21.2),
                   485: (106124877.9296875, 6.0632738,  4.0),
                  1181: (191085815.4296875, 0.7853981, 26.3),
                  1182: (191207885.7421875, 0.7853981, 27.0),
                  1183: (191329956.0546875, 0.7853981, 25.6),
                  1448: (223678588.8671875, 2.6075219, 25.7),
                  1449: (223800659.1796875, 2.6075219, 22.6),
                  1450: (223922729.4921875, 2.6075219, 11.6),
                  1451: (224044799.8046875, 2.6075219,  5.9),
                  1452: (224166870.1171875, 2.6075219, 22.6),
                  1510: (231246948.2421875, 0.1068141, 23.9)}

        if not np.isclose(hd.freqs[0], 46920776.3671875, atol=0.001) or len(hd.freqs) != 1536:
            # We have less frequencies than usual (maybe testing)
            phs_sol = {np.argmin(np.abs(hd.freqs - freq)): (freq, heading, chisq) for chan, (freq, heading, chisq) in phs_sol.items() if hd.freqs[0] <= freq <= hd.freqs[-1]}


        rfi_chans = [chan for chan in phs_sol if chan_flags[chan]]
        if len(rfi_chans) >= 2:
            print('Channels used for delay-slope calibration with RFI:', rfi_chans)
            rfi_angles = np.array([phs_sol[chan][1] for chan in rfi_chans])
            rfi_headings = np.array([np.cos(rfi_angles), np.sin(rfi_angles), np.zeros_like(rfi_angles)])
            rfi_chisqs = np.array([phs_sol[chan][2] for chan in rfi_chans])

            # resolve firstcal degeneracy with delay slopes set by RFI transmitters, update cal
            RFI_dly_slope_gains = abscal.RFI_delay_slope_cal([red for red in expanded_reds if red[0] in sol.vis], hd.antpos, sol.vis, hd.freqs, rfi_chans, rfi_headings, rfi_wgts=rfi_chisqs**-1,
                                                             min_tau=-max_dly, max_tau=max_dly, delta_tau=0.1e-9, return_gains=True, gain_ants=sol.gains.keys())
            sol.gains = {ant: g * RFI_dly_slope_gains[ant] for ant, g in sol.gains.items()}
            apply_cal.calibrate_in_place(sol.vis, RFI_dly_slope_gains)
            malloc_trim()
        else:
            print(f"Only {len(rfi_chans)} RFI channels with known headings were flagged for RFI, so RFI-firstcal is being skipped.")

Perform absolute amplitude calibration using a model of autocorrelations¶

In [41]:
# Load simulated and then downsampled model of autocorrelations that includes receiver noise, then interpolate to upsample
if VALIDATION:
    hd_auto_model = io.HERAData('/lustre/aoc/projects/hera/Validation/H6C_IDR2/sim_data/h6c_validation_autos_for_amp_abscal_with_Trx_100K.uvh5')
else:
    hd_auto_model = io.HERAData(f'{HNBT_DATA}/SSM_autocorrelations_downsampled_sum_pol_convention.uvh5')
if not all_flagged():
    model, _, _ = hd_auto_model.read()
    per_pol_interpolated_model = {}
    for bl in model:
        sorted_lsts, lst_indices = np.unique(model.lsts, return_index=True)
        periodic_model = np.vstack([model[bl][lst_indices, :], model[bl][lst_indices[0], :]])
        periodic_lsts = np.append(sorted_lsts, sorted_lsts[0] + 2 * np.pi)
        lst_interpolated = interpolate.CubicSpline(periodic_lsts, periodic_model, axis=0, bc_type='periodic')(data.lsts)
        per_pol_interpolated_model[bl[2]] = interpolate.CubicSpline(model.freqs, lst_interpolated, axis=1)(data.freqs)
    model = {bl: per_pol_interpolated_model[bl[2]] for bl in auto_bls if utils.split_bl(bl)[0] not in overall_class.bad_ants}
All antennas are flagged, so this cell is being skipped.
In [42]:
if not all_flagged():
    # Run abscal and update omnical gains with abscal gains
    if len(model) > 0:
        redcaled_autos = {bl: sol.calibrate_bl(bl, data[bl]) for bl in auto_bls if utils.split_bl(bl)[0] not in overall_class.bad_ants}
        g_abscal = abscal.abs_amp_logcal(model, redcaled_autos, verbose=False, return_gains=True, gain_ants=sol.gains)
        sol.gains = {ant: g * g_abscal[ant] for ant, g in sol.gains.items()}
        apply_cal.calibrate_in_place(sol.vis, g_abscal)
        del redcaled_autos, g_abscal
All antennas are flagged, so this cell is being skipped.

Full absolute calibration of phase gradients¶

If an ABSCAL_MODEL_FILES_GLOB is provided, try to perform a full absolute calibration of tip-tilt phase gradients across the array using that those model files. Specifically, this step calibrates omnical visbility solutions using unique baselines simulated with a model of the sky and HERA's beam.

In [43]:
if not all_flagged():
    if ABSCAL_MODEL_FILES_GLOB is not None:
        abscal_model_files = sorted(glob.glob(ABSCAL_MODEL_FILES_GLOB))
    elif VALIDATION:
        abscal_model_files = sorted(glob.glob('/lustre/aoc/projects/hera/Validation/H6C_IDR2/sim_data/foregrounds/zen.LST.*.foregrounds.uvh5'))
    else:
        # try to find files on site
        abscal_model_files = sorted(glob.glob('/mnt/sn1/data1/abscal_models/H6C/zen.2458894.?????.uvh5'))
        if len(abscal_model_files) == 0:
            # try to find files at NRAO
            abscal_model_files = sorted(glob.glob('/lustre/aoc/projects/hera/h6c-analysis/abscal_models/h6c_abscal_files_unique_baselines/zen.2458894.?????.uvh5'))
    print(f'Found {len(abscal_model_files)} abscal model files{" in " + os.path.dirname(abscal_model_files[0]) if len(abscal_model_files) > 0 else ""}.')
All antennas are flagged, so this cell is being skipped.
In [44]:
if not all_flagged():
    # Try to perform a full abscal of phase
    if len(abscal_model_files) == 0:
        DO_FULL_ABSCAL = False
        print('No model files found... not performing full absolute calibration of phase gradients.')
    elif np.all([ant in overall_class.bad_ants for ant in ants]):
        DO_FULL_ABSCAL = False
        print('All antennas classified as bad... skipping absolute calibration of phase gradients.')
    else:
        abscal_start = time.time()
        # figure out which model files match the LSTs of the data
        matched_model_files = sorted(set(abscal.match_times(SUM_FILE, abscal_model_files, filetype='uvh5')))
        if len(matched_model_files) == 0:
            DO_FULL_ABSCAL = False
            print(f'No model files found matching the LSTs of this file after searching for {(time.time() - abscal_start) / 60:.2f} minutes. '
                  'Not performing full absolute calibration of phase gradients.')
        else:
            DO_FULL_ABSCAL = True
            # figure out appropriate model times to load
            hdm = io.HERAData(matched_model_files)
            all_model_times, all_model_lsts = abscal.get_all_times_and_lsts(hdm, unwrap=True)
            d2m_time_map = abscal.get_d2m_time_map(data.times, np.unwrap(data.lsts), all_model_times, all_model_lsts, extrap_limit=.5)
All antennas are flagged, so this cell is being skipped.
In [45]:
if not all_flagged():
    if DO_FULL_ABSCAL:
        abscal_meta = {}
        for pol in ['ee', 'nn']:
            print(f'Performing absolute phase gradient calibration of {pol}-polarized visibility solutions...')
            
            # load matching times and baselines
            unflagged_data_bls = [bl for bl in vissol_flags if not np.all(vissol_flags[bl]) and bl[2] == pol]
            model_bls = copy.deepcopy(hdm.bls)
            model_antpos = hdm.data_antpos
            if len(matched_model_files) > 1:  # in this case, it's a dictionary
                model_bls = list(set([bl for bls in list(hdm.bls.values()) for bl in bls]))
                model_antpos = {ant: pos for antpos in hdm.data_antpos.values() for ant, pos in antpos.items()}
            data_bls, model_bls, data_to_model_bl_map = abscal.match_baselines(unflagged_data_bls, model_bls, data.antpos, model_antpos=model_antpos, 
                                                                             pols=[pol], data_is_redsol=True, model_is_redundant=True, tol=1.0,
                                                                             min_bl_cut=ABSCAL_MIN_BL_LEN, max_bl_cut=ABSCAL_MAX_BL_LEN, verbose=True)
            model, model_flags, _ = io.partial_time_io(hdm, np.unique([d2m_time_map[time] for time in data.times]), bls=model_bls)
            model_bls = [data_to_model_bl_map[bl] for bl in data_bls]
            
            # rephase model to match in lsts
            model_blvecs = {bl: model.antpos[bl[0]] - model.antpos[bl[1]] for bl in model.keys()}
            utils.lst_rephase(model, model_blvecs, model.freqs, data.lsts - model.lsts,
                              lat=hdm.telescope.location.lat.deg, inplace=True)
    
            # run abscal and apply 
            abscal_meta[pol], delta_gains = abscal.complex_phase_abscal(sol.vis, model, sol.reds, data_bls, model_bls)
            
            # apply gains
            sol.gains = {antpol : g * delta_gains.get(antpol, 1) for antpol, g in sol.gains.items()}
            apply_cal.calibrate_in_place(sol.vis, delta_gains)            
         
        del model, model_flags, delta_gains
        malloc_trim()    
        
        print(f'Finished absolute calibration of tip-tilt phase slopes in {(time.time() - abscal_start) / 60:.2f} minutes.')
All antennas are flagged, so this cell is being skipped.
In [46]:
if not all_flagged() and DO_FULL_ABSCAL and CALIBRATE_CROSS_POLS:
    cross_pol_cal_start = time.time()

    # Compute reds for good antennas 
    cross_reds = redcal.get_reds(hd.data_antpos, pols=['en', 'ne'], bl_error_tol=2.0)        
    cross_reds = redcal.filter_reds(cross_reds, ex_ants=overall_class.bad_ants, pols=['en', 'ne'], antpos=hd.antpos, **fr_settings)    
    unflagged_data_bls = [red[0] for red in cross_reds]

    # Get cross-polarized model visibilities
    model_bls = copy.deepcopy(hdm.bls)
    model_antpos = hdm.data_antpos
    if len(matched_model_files) > 1:  # in this case, it's a dictionary
        model_bls = list(set([bl for bls in list(hdm.bls.values()) for bl in bls]))
        model_antpos = {ant: pos for antpos in hdm.data_antpos.values() for ant, pos in antpos.items()}

    data_bls, model_bls, data_to_model_bl_map = abscal.match_baselines(unflagged_data_bls, model_bls, data.antpos, model_antpos=model_antpos, 
                                                                     pols=['en', 'ne'], data_is_redsol=False, model_is_redundant=True, tol=1.0,
                                                                     min_bl_cut=ABSCAL_MIN_BL_LEN, max_bl_cut=ABSCAL_MAX_BL_LEN, verbose=True)
    
    model, model_flags, _ = io.partial_time_io(hdm, np.unique([d2m_time_map[time] for time in data.times]), 
                                               bls=list(set([bl[0:2] for bl in model_bls])), polarizations=['en', 'ne'])
    model_bls = [data_to_model_bl_map[bl] for bl in data_bls]

    # rephase model to match in lsts
    model_blvecs = {bl: model.antpos[bl[0]] - model.antpos[bl[1]] for bl in model.keys()}
    utils.lst_rephase(model, model_blvecs, model.freqs, data.lsts - model.lsts, lat=hdm.telescope.location.lat.deg, inplace=True)


    wgts_here = {}
    data_here = {}

    
    for red in cross_reds:
        data_bl = red[0]
        if data_bl in data_to_model_bl_map:

            wgts_here[data_bl] = np.sum([
                np.logical_not(omni_flags[utils.split_bl(bl)[0]] | omni_flags[utils.split_bl(bl)[1]])
                for bl in red
            ], axis=0)
            data_here[data_bl] = np.nanmean([
                np.where(
                    omni_flags[utils.split_bl(bl)[0]] | omni_flags[utils.split_bl(bl)[1]],
                    np.nan, sol.calibrate_bl(bl, data[bl])
                ) 
                for bl in red
            ], axis=0)
    
    # Run cross-polarized phase calibration
    delta = abscal.cross_pol_phase_cal(
        model=model, data=data_here, wgts=wgts_here, data_bls=data_bls, model_bls=model_bls, return_gains=False, 
        refpol='Jee', gain_ants=sol.gains.keys()
    )
    delta_gains = {antpol: (np.ones_like(delta) if antpol[1] == 'Jee' else np.exp(1j * delta)) for antpol in sol.gains.keys()}
    
    # apply gains
    # \Delta = \phi_e - \phi_n, where V_{en}^{cal} = V_{en}^{uncal} * e^{i \Delta} 
    # and V_{ne}^{cal} = V_{ne}^{uncal} * e^{-i \Delta}
    sol.gains = {antpol: g * delta_gains[antpol] for antpol, g in sol.gains.items()}
    apply_cal.calibrate_in_place(sol.vis, delta_gains)
    del hdm, model, model_flags, delta_gains
    print(f'Finished relative polarized phase calibration in {(time.time() - cross_pol_cal_start) / 60:.2f} minutes.')
All antennas are flagged, so this cell is being skipped.

Plotting¶

In [47]:
def redundant_group_plot():
    if np.all([ant in overall_class.bad_ants for ant in ants]):
        print('All antennas classified as bad. Nothing to plot.')
        return
    
    fig, axes = plt.subplots(2, 2, figsize=(14, 6), dpi=100, sharex='col', sharey='row', gridspec_kw={'hspace': 0, 'wspace': 0})
    for i, pol in enumerate(['ee', 'nn']):
        reds_here = redcal.get_reds(hd.data_antpos, pols=[pol], pol_mode='1pol', bl_error_tol=2.0)
        red = sorted(redcal.filter_reds(reds_here, ex_ants=overall_class.bad_ants), key=len, reverse=True)[0]
        rc_data = {bl: sol.calibrate_bl(bl, data[bl]) for bl in red}
        for bl in red:
            axes[0, i].plot(hd.freqs/1e6, np.angle(rc_data[bl][0]), alpha=.5, lw=.5)
            axes[1, i].semilogy(hd.freqs/1e6, np.abs(rc_data[bl][0]), alpha=.5, lw=.5)
        axes[0, i].plot(hd.freqs / 1e6, np.angle(sol.vis[red[0]][0]), lw=1, c='k')
        axes[1, i].semilogy(hd.freqs / 1e6, np.abs(sol.vis[red[0]][0]), lw=1, c='k', label=f'Baseline Group:\n{(int(red[0][0]), int(red[0][1]), red[0][2])}')
        axes[1, i].set_xlabel('Frequency (MHz)')
        axes[1, i].legend(loc='upper right')
    axes[0, 0].set_ylabel('Visibility Phase (radians)')
    axes[1, 0].set_ylabel('Visibility Amplitude (Jy)')
    plt.tight_layout()
In [48]:
def abscal_degen_plot():
    if DO_FULL_ABSCAL:
        fig, axes = plt.subplots(3, 1, figsize=(14, 6), dpi=100, sharex=True, gridspec_kw={'hspace': .05})

        for ax, pol in zip(axes[:2], ['ee', 'nn']):
            for kk in range(abscal_meta[pol]['Lambda_sol'].shape[-1]):
                ax.plot(hd.freqs[~rfi_flags[0]] * 1e-6, abscal_meta[pol]['Lambda_sol'][0, ~rfi_flags[0], kk], '.', ms=1, label=f"Component {kk}")

            ax.set_ylim(-np.pi-0.5, np.pi+0.5)
            ax.set_xlabel('Frequency (MHz)')
            ax.set_ylabel('Phase Gradient\nVector Component')
            ax.legend(markerscale=20, title=f'{pol}-polarization', loc='lower right')
            ax.grid()
            
        for pol, color in zip(['ee', 'nn'], ['b', 'r']):
            axes[2].plot(hd.freqs[~rfi_flags[0]]*1e-6, abscal_meta[pol]['Z_sol'].real[0, ~rfi_flags[0]], '.', ms=1, label=pol, color=color)
        axes[2].set_ylim(-.25, 1.05)
        axes[2].set_ylabel('Re[Z($\\nu$)]')
        axes[2].legend(markerscale=20, loc='lower right')
        axes[2].grid()            
        plt.tight_layout()
In [49]:
def polarized_gain_phase_plot():
    if CALIBRATE_CROSS_POLS and DO_FULL_ABSCAL:
        plt.figure(figsize=(14, 4), dpi=100)
        for i, time in enumerate(data.times):
            plt.plot(data.freqs / 1e6, np.where(rfi_flags[i], np.nan, delta[i, :]), '.', ms=1.5, label=f'{time:.6f}')
        plt.ylim(-np.pi-0.5, np.pi+0.5)
        plt.xlabel('Frequency (MHz)')
        plt.ylabel('Relative Phase $\Delta \ (\phi_{ee} - \phi_{nn})$')
        plt.grid()
        plt.legend()

Figure 4: Redundant calibration of a single baseline group¶

The results of a redundant-baseline calibration of a single integration and a single group, the one with the highest redundancy in each polarization after antenna classification and excision based on the above, plus the removal of antennas with high chi^2 per antenna. The black line is the redundant visibility solution. Each thin colored line is a different baseline group. Phases are shown in the top row, amplitudes in the bottom, ee-polarized visibilities in the left column, and nn-polarized visibilities in the right.

In [50]:
if PLOT and not all_flagged(): redundant_group_plot()
All antennas are flagged, so this cell is being skipped.

Figure 5: Absolute calibration of redcal degeneracies¶

This figure shows the per-frequency phase gradient solutions across the array for both polarizations and all components of the degenerate subspace of redundant-baseline calibraton. While full HERA only has two such tip-tilt degeneracies, a subset of HERA can have up to OC_MAX_DIMS (depending on antenna flagging). In addition to the absolute amplitude, this is the full set of the calibration degrees of freedom not constrainted by redcal. This figure also includes a plot of $Re[Z(\nu)]$, the complex objective function which varies from -1 to 1 and indicates how well the data and the absolute calibration model have been made to agree. Perfect agreement is 1.0 and good agreement is anything above $\sim$0.5 Decorrelation yields values closer to 0, where anything below $\sim$0.3 is suspect.

In [51]:
if PLOT and not all_flagged(): abscal_degen_plot()
All antennas are flagged, so this cell is being skipped.

Figure 6: Relative Phase Calibration¶

This figure shows the relative phase calibration between the ee vs. nn polarizations.

In [52]:
if PLOT and not all_flagged(): polarized_gain_phase_plot()
All antennas are flagged, so this cell is being skipped.

Attempt to calibrate some flagged antennas¶

This attempts to calibrate bad antennas using information from good or suspect antennas without allowing bad antennas to affect their calibration. However, introducing 0s in gains or infs/nans in gains or visibilities can create problems down the line, so those are removed.

In [53]:
if not all_flagged():
    expand_start = time.time()
    expanded_reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol', bl_error_tol=2.0)
    sol.vis.build_red_keys(expanded_reds)
    redcal.expand_omni_gains(sol, expanded_reds, data, chisq_per_ant=meta['chisq_per_ant'])
    if not np.all([ant in overall_class.bad_ants for ant in ants]):
        redcal.expand_omni_vis(sol, expanded_reds, data)
    
    # Replace near-zeros in gains and infs/nans in gains/sols
    for ant in sol.gains:
        zeros_in_gains = np.isclose(sol.gains[ant], 0)
        if ant in omni_flags:
            omni_flags[ant][zeros_in_gains] = True
        sol.gains[ant][zeros_in_gains] = 1.0 + 0.0j
    sol.make_sol_finite()
    malloc_trim()
    print(f'Finished expanding gain solution in {(time.time() - expand_start) / 60:.2f} minutes.')
All antennas are flagged, so this cell is being skipped.
In [54]:
def array_chisq_plot(include_outriggers=True):
    if np.all([ant in overall_class.bad_ants for ant in ants]):
        print('All antennas classified as bad. Nothing to plot.')
        return    
    
    def _chisq_subplot(ants, size=250):
        fig, axes = plt.subplots(1, 2, figsize=(14, 5), dpi=100)
        for ax, pol in zip(axes, ['ee', 'nn']):
            ants_to_plot = set([ant for ant in meta['chisq_per_ant'] if utils.join_pol(ant[1], ant[1]) == pol and (ant[0] in ants)])
            cspas = np.array([np.nanmean(np.where(rfi_flags, np.nan, meta['chisq_per_ant'][ant])) for ant in ants_to_plot])
            xpos = [hd.antpos[ant[0]][0] for ant in ants_to_plot]
            ypos = [hd.antpos[ant[0]][1] for ant in ants_to_plot]
            scatter = ax.scatter(xpos, ypos, s=size, c=cspas, lw=.25, edgecolors=np.where(np.isfinite(cspas) & (cspas > 0), 'none', 'k'), 
                                 norm=matplotlib.colors.LogNorm(vmin=1, vmax=oc_cspa_suspect[1]))
            for ant in ants_to_plot:
                ax.text(hd.antpos[ant[0]][0], hd.antpos[ant[0]][1], ant[0], va='center', ha='center', fontsize=8,
                        c=('r' if ant in overall_class.bad_ants else 'w'))
            plt.colorbar(scatter, ax=ax, extend='both')
            ax.axis('equal')
            ax.set_xlabel('East-West Position (meters)')
            ax.set_ylabel('North-South Position (meters)')
            ax.set_title(f'{pol}-pol $\\chi^2$ / Antenna (Red is Flagged)')
        plt.tight_layout()    
    
    _chisq_subplot([ant for ant in hd.data_ants if ant < 320])
    outriggers = [ant for ant in hd.data_ants if ant >= 320]    
    if include_outriggers & (len(outriggers) > 0):
        _chisq_subplot([ant for ant in hd.data_ants if ant >= 320], size=400)

Figure 7: chi^2 per antenna across the array¶

This plot shows median (taken over time and frequency) of the normalized chi^2 per antenna. The expectation value for this quantity when the array is perfectly redundant is 1.0. Antennas that are classified as bad for any reason have their numbers shown in red. Some of those antennas were classified as bad during redundant calibration for high chi^2. Some of those antennas were originally excluded from redundant calibration because they were classified as bad earlier for some reason. See here for more details. Note that the color scale saturates at below 1 and above 10.

In [55]:
if PLOT and not all_flagged(): array_chisq_plot(include_outriggers=(not OC_SKIP_OUTRIGGERS))
All antennas are flagged, so this cell is being skipped.

Figure 8: Summary of antenna classifications after redundant calibration¶

This figure is the same as Figure 2, except that it now includes additional suspect or bad antennas based on redundant calibration. This can include antennas with high chi^2, but it can also include antennas classified as "bad" because they would add extra degeneracies to calibration.

In [56]:
if PLOT and not all_flagged(): array_class_plot(overall_class, extra_label=", Post-Redcal")
All antennas are flagged, so this cell is being skipped.
In [57]:
to_show = {'Antenna': [f'{ant[0]}{ant[1][-1]}' for ant in ants]}
classes = {'Antenna': [overall_class[ant] if ant in overall_class else '-' for ant in ants]}
to_show['Dead?'] = [{'good': 'No', 'bad': 'Yes'}[am_totally_dead[ant]] if (ant in am_totally_dead) else '' for ant in ants]
classes['Dead?'] = [am_totally_dead[ant] if (ant in am_totally_dead) else '' for ant in ants]
for title, ac in [('Low Correlation', am_corr),
                  ('Cross-Polarized', am_xpol),
                  ('Solar Alt', solar_class),
                  ('Even/Odd Zeros', zeros_class),
                  ('Autocorr Power', auto_power_class),
                  ('Autocorr Slope', auto_slope_class),
                  ('Auto RFI RMS', auto_rfi_class),
                  ('Autocorr Shape', auto_shape_class),
                  ('Bad Diff X-Engines', xengine_diff_class)]:
    to_show[title] = [f'{ac._data[ant]:.2G}' if (ac is not None and ant in ac._data) else '' for ant in ants]
    classes[title] = [ac[ant] if (ac is not None and ant in ac) else 'bad' for ant in ants]
    
to_show['Redcal chi^2'] = [f'{np.nanmean(np.where(rfi_flags, np.nan, meta["chisq_per_ant"][ant])):.3G}' \
                           if (meta is not None and meta['chisq_per_ant'] is not None and ant in meta['chisq_per_ant']) else '' for ant in ants]
classes['Redcal chi^2'] = [redcal_class[ant] if redcal_class is not None and ant in redcal_class else 'bad' for ant in ants]

df = pd.DataFrame(to_show)
df_classes = pd.DataFrame(classes)
colors = {'good': 'darkgreen', 'suspect': 'goldenrod', 'bad': 'maroon'}
df_colors = df_classes.applymap(lambda x: f'background-color: {colors.get(x, None)}')

table = df.style.hide() \
                .apply(lambda x: pd.DataFrame(df_colors.values, columns=x.columns), axis=None) \
                .set_properties(subset=['Antenna'], **{'font-weight': 'bold', 'border-right': "3pt solid black"}) \
                .set_properties(subset=df.columns[1:], **{'border-left': "1pt solid black"}) \
                .set_properties(**{'text-align': 'center', 'color': 'white'})

Table 1: Complete summary of per-antenna classifications¶

This table summarizes the results of the various classifications schemes detailed above. As before, green is good, yellow is suspect, and red is bad. The color for each antenna (first column) is the final summary of all other classifications. Antennas missing from redcal $\chi^2$ were excluded redundant-baseline calibration, either because they were flagged by ant_metrics or the even/odd zeros check, or because they would add unwanted extra degeneracies.

In [58]:
HTML(table.to_html())
Out[58]:
Antenna Dead? Low Correlation Cross-Polarized Solar Alt Even/Odd Zeros Autocorr Power Autocorr Slope Auto RFI RMS Autocorr Shape Bad Diff X-Engines Redcal chi^2
3e Yes -46 1.4E+03 0 -5.9
3n Yes -46 1.4E+03 0 -5.9
4e Yes -46 1.4E+03 0 -5.9
4n Yes -46 1.4E+03 0 -5.8
5e Yes -46 1.4E+03 0 -5.9
5n Yes -46 1.4E+03 0 -5.9
7e Yes -46 1.4E+03 0 -5.9
7n Yes -46 1.4E+03 0 -5.9
8e Yes -46 1.4E+03 0 -5.9
8n Yes -46 1.4E+03 0 -5.9
9e Yes -46 1.4E+03 0 -5.9
9n Yes -46 1.4E+03 0 -5.9
10e Yes -46 1.4E+03 0 -5.9
10n Yes -46 1.4E+03 0 -5.9
15e Yes -46 1.4E+03 0 -5.9
15n Yes -46 1.4E+03 0 -5.9
16e Yes -46 1.4E+03 0 -5.9
16n Yes -46 1.4E+03 0 -5.9
17e Yes -46 1.4E+03 0 -5.9
17n Yes -46 1.4E+03 0 -5.9
18e Yes -46 1.4E+03 0 -5.9
18n Yes -46 1.4E+03 0 -5.9
19e Yes -46 1.4E+03 0 -5.9
19n Yes -46 1.4E+03 0 -5.9
20e Yes -46 1.4E+03 0 -5.9
20n Yes -46 1.4E+03 0 -5.9
21e Yes -46 1.4E+03 0 -5.9
21n Yes -46 1.4E+03 0 -5.9
22e Yes -46 1.5E+03 0 0
22n Yes -46 1.5E+03 0 0
27e Yes -46 1.4E+03 0 -5.9
27n Yes -46 1.4E+03 0 -5.9
28e Yes -46 1.4E+03 0 -5.9
28n Yes -46 1.4E+03 0 -5.9
29e Yes -46 1.4E+03 0 -5.9
29n Yes -46 1.4E+03 0 -5.9
30e Yes -46 1.4E+03 0 -5.8
30n Yes -46 1.4E+03 0 -5.8
31e Yes -46 1.4E+03 0 -5.9
31n Yes -46 1.4E+03 0 -5.9
32e Yes -46 1.4E+03 0 -5.9
32n Yes -46 1.4E+03 0 -5.9
33e Yes -46 1.4E+03 0 -5.9
33n Yes -46 1.4E+03 0 -5.9
34e Yes -46 1.5E+03 0 0
34n Yes -46 1.5E+03 0 0
35e Yes -46 1.5E+03 0 0
35n Yes -46 1.5E+03 0 0
36e Yes -46 1.4E+03 0 -5.9
36n Yes -46 1.4E+03 0 -5.9
37e Yes -46 1.4E+03 0 -5.9
37n Yes -46 1.4E+03 0 -5.9
38e Yes -46 1.4E+03 0 -5.9
38n Yes -46 1.4E+03 0 -5.9
40e Yes -46 1.4E+03 0 -5.9
40n Yes -46 1.4E+03 0 -5.9
41e Yes -46 1.4E+03 0 -5.9
41n Yes -46 1.4E+03 0 -5.9
42e Yes -46 1.4E+03 0 -5.9
42n Yes -46 1.4E+03 0 -5.9
43e Yes -46 1.4E+03 0 -5.9
43n Yes -46 1.4E+03 0 -5.9
44e Yes -46 1.4E+03 0 -5.9
44n Yes -46 1.4E+03 0 -5.9
45e Yes -46 1.4E+03 0 -5.9
45n Yes -46 1.4E+03 0 -5.9
46e Yes -46 1.4E+03 0 -5.5
46n Yes -46 1.4E+03 0 -5.9
47e Yes -46 1.5E+03 0 0
47n Yes -46 1.5E+03 0 0
48e Yes -46 1.5E+03 0 0
48n Yes -46 1.5E+03 0 0
49e Yes -46 1.5E+03 0 0
49n Yes -46 1.5E+03 0 0
50e Yes -46 1.4E+03 0 -5.9
50n Yes -46 1.4E+03 0 -5.9
51e Yes -46 1.4E+03 0 -5.9
51n Yes -46 1.4E+03 0 -5.9
52e Yes -46 1.4E+03 0 -5.9
52n Yes -46 1.4E+03 0 -5.9
53e Yes -46 1.4E+03 0 -5.8
53n Yes -46 1.4E+03 0 -5.9
54e Yes -46 1.4E+03 0 -5.9
54n Yes -46 1.4E+03 0 -5.9
55e Yes -46 1.4E+03 0 -5.9
55n Yes -46 1.4E+03 0 -5.9
56e Yes -46 1.4E+03 0 -5.9
56n Yes -46 1.4E+03 0 -5.9
57e Yes -46 1.4E+03 0 -5.9
57n Yes -46 1.4E+03 0 -5.9
58e Yes -46 1.4E+03 0 -5.9
58n Yes -46 1.4E+03 0 -5.9
59e Yes -46 1.4E+03 0 -5.9
59n Yes -46 1.4E+03 0 -5.9
60e Yes -46 1.4E+03 0 -5.9
60n Yes -46 1.4E+03 0 -5.9
61e Yes -46 1.5E+03 0 0
61n Yes -46 1.5E+03 0 0
62e Yes -46 1.5E+03 0 0
62n Yes -46 1.5E+03 0 0
63e Yes -46 1.5E+03 0 0
63n Yes -46 1.5E+03 0 0
64e Yes -46 1.5E+03 0 0
64n Yes -46 1.5E+03 0 0
65e Yes -46 1.4E+03 0 -5.9
65n Yes -46 1.4E+03 0 -5.9
66e Yes -46 1.4E+03 0 -5.9
66n Yes -46 1.4E+03 0 -5.9
67e Yes -46 1.4E+03 0 -5.9
67n Yes -46 1.4E+03 0 -5.9
68e Yes -46 1.4E+03 0 -5.9
68n Yes -46 1.4E+03 0 -5.9
69e Yes -46 1.4E+03 0 -5.9
69n Yes -46 1.4E+03 0 -5.9
70e Yes -46 1.4E+03 0 -5.9
70n Yes -46 1.4E+03 0 -5.9
71e Yes -46 1.4E+03 0 -5.9
71n Yes -46 1.4E+03 0 -5.9
72e Yes -46 1.4E+03 0 -5.9
72n Yes -46 1.4E+03 0 -5.9
73e Yes -46 1.4E+03 0 -5.9
73n Yes -46 1.4E+03 0 -5.9
74e Yes -46 1.4E+03 0 -5.9
74n Yes -46 1.4E+03 0 -5.9
75e Yes -46 1.4E+03 0 -5.9
75n Yes -46 1.4E+03 0 -5.9
76e Yes -46 1.4E+03 0 -5.9
76n Yes -46 1.4E+03 0 -5.9
77e Yes -46 1.5E+03 0 0
77n Yes -46 1.5E+03 0 0
78e Yes -46 1.5E+03 0 0
78n Yes -46 1.5E+03 0 0
79e Yes -46 1.4E+03 0 -5.9
79n Yes -46 1.4E+03 0 -5.9
80e Yes -46 1.4E+03 0 -5.9
80n Yes -46 1.4E+03 0 -5.9
81e Yes -46 1.4E+03 0 -5.9
81n Yes -46 1.4E+03 0 -5.9
82e Yes -46 1.4E+03 0 -5.9
82n Yes -46 1.4E+03 0 -5.9
83e Yes -46 1.4E+03 0 -5.9
83n Yes -46 1.4E+03 0 -5.9
84e Yes -46 1.4E+03 0 -6.1
84n Yes -46 1.5E+03 0 -6.1
85e Yes -46 1.4E+03 0 -6.1
85n Yes -46 1.5E+03 0 -6.2
86e Yes -46 1.4E+03 0 -6.1
86n Yes -46 1.4E+03 0 -6.1
87e Yes -46 1.4E+03 0 -6.1
87n Yes -46 1.5E+03 0 -6.3
88e Yes -46 1.5E+03 0 0
88n Yes -46 1.5E+03 0 0
89e Yes -46 1.4E+03 0 -5.9
89n Yes -46 1.4E+03 0 -5.9
90e Yes -46 1.5E+03 0 0
90n Yes -46 1.5E+03 0 0
91e Yes -46 1.4E+03 0 -5.9
91n Yes -46 1.4E+03 0 -5.9
92e Yes -46 1.4E+03 0 -5.9
92n Yes -46 1.4E+03 0 -5.9
93e Yes -46 1.4E+03 0 -5.9
93n Yes -46 1.4E+03 0 -5.9
94e Yes -46 1.4E+03 0 -5.9
94n Yes -46 1.4E+03 0 -5.9
95e Yes -46 1.4E+03 0 -5.9
95n Yes -46 1.4E+03 0 -5.9
96e Yes -46 1.4E+03 0 -5.9
96n Yes -46 1.4E+03 0 -5.9
97e Yes -46 1.4E+03 0 -5.9
97n Yes -46 1.4E+03 0 -5.9
98e Yes -46 1.4E+03 0 -5.9
98n Yes -46 1.4E+03 0 -5.9
99e Yes -46 1.4E+03 0 -5.9
99n Yes -46 1.4E+03 0 -5.9
100e Yes -46 1.4E+03 0 -5.9
100n Yes -46 1.4E+03 0 -5.9
101e Yes -46 1.4E+03 0 -6.1
101n Yes -46 1.4E+03 0 -6.1
102e Yes -46 1.4E+03 0 -6.1
102n Yes -46 1.4E+03 0 -6
103e Yes -46 1.4E+03 0 -6.1
103n Yes -46 1.5E+03 0 -6.1
104e Yes -46 1.4E+03 0 -6.1
104n Yes -46 1.4E+03 0 -6.1
105e Yes -46 1.4E+03 0 -5.9
105n Yes -46 1.4E+03 0 -5.9
106e Yes -46 1.4E+03 0 -5.9
106n Yes -46 1.4E+03 0 -5.9
107e Yes -46 1.5E+03 0 0
107n Yes -46 1.5E+03 0 0
108e Yes -46 1.4E+03 0 -5.9
108n Yes -46 1.4E+03 0 -5.9
109e Yes -46 1.4E+03 0 -5.9
109n Yes -46 1.4E+03 0 -5.9
110e Yes -46 1.4E+03 0 -5.9
110n Yes -46 1.4E+03 0 -5.9
111e Yes -46 1.4E+03 0 -5.9
111n Yes -46 1.4E+03 0 -5.9
112e Yes -46 1.4E+03 0 -5.9
112n Yes -46 1.4E+03 0 -5.9
113e Yes -46 1.4E+03 0 -5.9
113n Yes -46 1.4E+03 0 -5.9
114e Yes -46 1.4E+03 0 -5.9
114n Yes -46 1.4E+03 0 -5.9
115e Yes -46 1.4E+03 0 -5.9
115n Yes -46 1.4E+03 0 -5.9
116e Yes -46 1.4E+03 0 -5.9
116n Yes -46 1.4E+03 0 -5.9
117e Yes -46 1.4E+03 0 -5.9
117n Yes -46 1.4E+03 0 -5.9
118e Yes -46 1.4E+03 0 -5.9
118n Yes -46 1.4E+03 0 -5.9
119e Yes -46 1.4E+03 0 -5.9
119n Yes -46 1.4E+03 0 -5.9
120e Yes -46 1.4E+03 0 -6.1
120n Yes -46 1.4E+03 0 -6.1
121e Yes -46 1.4E+03 0 -6.1
121n Yes -46 1.4E+03 0 -6
122e Yes -46 1.4E+03 0 -6.2
122n Yes -46 1.4E+03 0 -6.1
123e Yes -46 1.4E+03 0 -6.1
123n Yes -46 1.4E+03 0 -6
124e Yes -46 1.4E+03 0 -5.9
124n Yes -46 1.4E+03 0 -5.9
125e Yes -46 1.4E+03 0 -5.9
125n Yes -46 1.4E+03 0 -5.9
126e Yes -46 1.4E+03 0 -5.9
126n Yes -46 1.4E+03 0 -5.9
127e Yes -46 1.4E+03 0 -5.9
127n Yes -46 1.4E+03 0 -5.9
128e Yes -46 1.4E+03 0 -5.9
128n Yes -46 1.4E+03 0 -5.9
129e Yes -46 1.4E+03 0 -5.9
129n Yes -46 1.4E+03 0 -5.9
130e Yes -46 1.4E+03 0 -5.9
130n Yes -46 1.4E+03 0 -5.9
131e Yes -46 1.4E+03 0 -5.9
131n Yes -46 1.4E+03 0 -5.9
132e Yes -46 1.4E+03 0 -5.9
132n Yes -46 1.4E+03 0 -5.9
133e Yes -46 1.4E+03 0 -5.9
133n Yes -46 1.4E+03 0 -5.9
134e Yes -46 1.4E+03 0 -5.9
134n Yes -46 1.4E+03 0 -5.9
135e Yes -46 1.4E+03 0 -5.9
135n Yes -46 1.4E+03 0 -5.9
136e Yes -46 1.4E+03 0 -5.9
136n Yes -46 1.4E+03 0 -5.8
137e Yes -46 1.4E+03 0 -5.9
137n Yes -46 1.4E+03 0 -5.9
138e Yes -46 1.4E+03 0 -5.9
138n Yes -46 1.4E+03 0 -5.9
139e Yes -46 1.4E+03 0 -5.9
139n Yes -46 1.4E+03 0 -5.9
140e Yes -46 1.4E+03 0 -5.9
140n Yes -46 1.4E+03 0 -5.9
141e Yes -46 1.4E+03 0 -5.9
141n Yes -46 1.4E+03 0 -5.9
142e Yes -46 1.4E+03 0 -5.9
142n Yes -46 1.4E+03 0 -5.9
143e Yes -46 1.4E+03 0 -5.9
143n Yes -46 1.4E+03 0 -5.9
144e Yes -46 1.4E+03 0 -5.9
144n Yes -46 1.4E+03 0 -5.9
145e Yes -46 1.4E+03 0 -5.9
145n Yes -46 1.4E+03 0 -5.9
146e Yes -46 1.4E+03 0 -5.9
146n Yes -46 1.4E+03 0 -5.9
147e Yes -46 1.4E+03 0 -5.9
147n Yes -46 1.4E+03 0 -5.9
148e Yes -46 1.4E+03 0 -5.9
148n Yes -46 1.4E+03 0 -5.9
149e Yes -46 1.4E+03 0 -5.9
149n Yes -46 1.4E+03 0 -5.9
150e Yes -46 1.4E+03 0 -5.9
150n Yes -46 1.4E+03 0 -5.9
152e Yes -46 1.4E+03 0 -5.9
152n Yes -46 1.4E+03 0 -5.9
153e Yes -46 1.4E+03 0 -5.9
153n Yes -46 1.4E+03 0 -5.9
154e Yes -46 1.4E+03 0 -5.9
154n Yes -46 1.4E+03 0 -5.9
155e Yes -46 1.4E+03 0 -5.9
155n Yes -46 1.4E+03 0 -5.9
156e Yes -46 1.4E+03 0 -5.9
156n Yes -46 1.4E+03 0 -5.9
157e Yes -46 1.4E+03 0 -5.9
157n Yes -46 1.4E+03 0 -5.9
158e Yes -46 1.4E+03 0 -5.9
158n Yes -46 1.4E+03 0 -5.9
159e Yes -46 1.4E+03 0 -5.9
159n Yes -46 1.4E+03 0 -5.9
160e Yes -46 1.4E+03 0 -5.9
160n Yes -46 1.4E+03 0 -5.9
161e Yes -46 1.4E+03 0 -5.9
161n Yes -46 1.4E+03 0 -5.9
162e Yes -46 1.4E+03 0 -5.9
162n Yes -46 1.4E+03 0 -5.9
163e Yes -46 1.4E+03 0 -5.9
163n Yes -46 1.4E+03 0 -5.9
164e Yes -46 1.4E+03 0 -5.9
164n Yes -46 1.4E+03 0 -5.9
165e Yes -46 1.4E+03 0 -5.9
165n Yes -46 1.4E+03 0 -5.9
166e Yes -46 1.4E+03 0 -5.9
166n Yes -46 1.4E+03 0 -5.9
167e Yes -46 1.4E+03 0 -5.9
167n Yes -46 1.4E+03 0 -5.9
168e Yes -46 1.4E+03 0 -5.9
168n Yes -46 1.4E+03 0 -5.9
169e Yes -46 1.4E+03 0 -5.9
169n Yes -46 1.4E+03 0 -5.9
170e Yes -46 1.4E+03 0 -5.9
170n Yes -46 1.4E+03 0 -5.9
173e Yes -46 1.4E+03 0 -5.9
173n Yes -46 1.4E+03 0 -5.9
174e Yes -46 1.4E+03 0 -5.9
174n Yes -46 1.4E+03 0 -5.9
175e Yes -46 1.4E+03 0 -5.9
175n Yes -46 1.4E+03 0 -5.9
176e Yes -46 1.4E+03 0 -5.9
176n Yes -46 1.4E+03 0 -5.9
177e Yes -46 1.4E+03 0 -5.9
177n Yes -46 1.4E+03 0 -5.9
178e Yes -46 1.4E+03 0 -5.9
178n Yes -46 1.4E+03 0 -5.9
179e Yes -46 1.4E+03 0 -5.9
179n Yes -46 1.4E+03 0 -5.9
180e Yes -46 1.4E+03 0 -5.9
180n Yes -46 1.4E+03 0 -5.9
181e Yes -46 1.4E+03 0 -5.9
181n Yes -46 1.4E+03 0 -5.9
182e Yes -46 1.4E+03 0 -5.9
182n Yes -46 1.4E+03 0 -5.9
183e Yes -46 1.4E+03 0 -5.9
183n Yes -46 1.4E+03 0 -5.9
184e Yes -46 1.4E+03 0 -5.9
184n Yes -46 1.4E+03 0 -5.9
185e Yes -46 1.4E+03 0 -5.9
185n Yes -46 1.4E+03 0 -5.9
186e Yes -46 1.4E+03 0 -5.9
186n Yes -46 1.4E+03 0 -5.9
187e Yes -46 1.4E+03 0 -5.9
187n Yes -46 1.4E+03 0 -5.9
188e Yes -46 1.4E+03 0 -5.9
188n Yes -46 1.4E+03 0 -5.9
189e Yes -46 1.4E+03 0 -5.9
189n Yes -46 1.4E+03 0 -5.9
190e Yes -46 1.4E+03 0 -5.9
190n Yes -46 1.4E+03 0 -5.9
191e Yes -46 1.4E+03 0 -5.9
191n Yes -46 1.4E+03 0 -6.4
192e Yes -46 1.4E+03 0 -5.9
192n Yes -46 1.4E+03 0 -5.9
193e Yes -46 1.4E+03 0 -5.9
193n Yes -46 1.4E+03 0 -5.9
194e Yes -46 1.4E+03 0 -5.9
194n Yes -46 1.4E+03 0 -5.9
195e Yes -46 1.4E+03 0 -5.9
195n Yes -46 1.4E+03 0 -5.9
196e Yes -46 1.4E+03 0 -5.9
196n Yes -46 1.4E+03 0 -5.9
197e Yes -46 1.4E+03 0 -5.9
197n Yes -46 1.4E+03 0 -5.9
198e Yes -46 1.4E+03 0 -5.9
198n Yes -46 1.4E+03 0 -5.9
200e Yes -46 1.4E+03 0 -5.9
200n Yes -46 1.4E+03 0 -5.9
201e Yes -46 1.4E+03 0 -5.9
201n Yes -46 1.4E+03 0 -5.9
202e Yes -46 1.4E+03 0 -5.9
202n Yes -46 1.4E+03 0 -5.9
203e Yes -46 1.4E+03 0 -5.9
203n Yes -46 1.4E+03 0 -5.9
204e Yes -46 1.4E+03 0 -5.9
204n Yes -46 1.4E+03 0 -6
205e Yes -46 1.4E+03 0 -5.9
205n Yes -46 1.4E+03 0 -5.9
206e Yes -46 1.4E+03 0 -5.9
206n Yes -46 1.4E+03 0 -5.9
207e Yes -46 1.4E+03 0 -5.9
207n Yes -46 1.4E+03 0 -5.9
208e Yes -46 1.4E+03 0 -5.9
208n Yes -46 1.4E+03 0 -5.8
209e Yes -46 1.4E+03 0 -5.9
209n Yes -46 1.4E+03 0 -5.9
210e Yes -46 1.4E+03 0 -5.9
210n Yes -46 1.4E+03 0 -5.9
211e Yes -46 1.4E+03 0 -5.9
211n Yes -46 1.4E+03 0 -5.9
212e Yes -46 1.4E+03 0 -5.9
212n Yes -46 1.4E+03 0 -5.9
213e Yes -46 1.4E+03 0 -5.9
213n Yes -46 1.4E+03 0 -5.9
214e Yes -46 1.4E+03 0 -5.9
214n Yes -46 1.4E+03 0 -5.9
215e Yes -46 1.4E+03 0 -5.9
215n Yes -46 1.4E+03 0 -5.8
216e Yes -46 1.4E+03 0 -5.9
216n Yes -46 1.4E+03 0 -5.9
217e Yes -46 1.4E+03 0 -5.9
217n Yes -46 1.4E+03 0 -5.9
218e Yes -46 1.4E+03 0 -5.9
218n Yes -46 1.4E+03 0 -5.9
219e Yes -46 1.4E+03 0 -5.9
219n Yes -46 1.4E+03 0 -5.9
220e Yes -46 1.4E+03 0 -5.9
220n Yes -46 1.4E+03 0 -5.9
221e Yes -46 1.4E+03 0 -5.9
221n Yes -46 1.4E+03 0 -5.9
222e Yes -46 1.4E+03 0 -5.9
222n Yes -46 1.4E+03 0 -5.9
223e Yes -46 1.4E+03 0 -5.9
223n Yes -46 1.4E+03 0 -5.9
224e Yes -46 1.4E+03 0 -5.9
224n Yes -46 1.4E+03 0 -5.9
225e Yes -46 1.5E+03 0 0
225n Yes -46 1.5E+03 0 0
226e Yes -46 1.5E+03 0 0
226n Yes -46 1.5E+03 0 0
227e Yes -46 1.4E+03 0 -5.9
227n Yes -46 1.4E+03 0 -5.9
228e Yes -46 1.4E+03 0 -5.9
228n Yes -46 1.4E+03 0 -5.9
229e Yes -46 1.4E+03 0 -5.9
229n Yes -46 1.4E+03 0 -5.9
231e Yes -46 1.4E+03 0 -5.9
231n Yes -46 1.4E+03 0 -5.9
232e Yes -46 1.4E+03 0 -5.9
232n Yes -46 1.4E+03 0 -5.9
233e Yes -46 1.4E+03 0 -5.9
233n Yes -46 1.4E+03 0 -5.9
234e Yes -46 1.4E+03 0 -5.9
234n Yes -46 1.4E+03 0 -5.9
237e Yes -46 1.4E+03 0 -5.9
237n Yes -46 1.4E+03 0 -5.9
238e Yes -46 1.4E+03 0 -5.9
238n Yes -46 1.4E+03 0 -5.9
239e Yes -46 1.4E+03 0 -5.9
239n Yes -46 1.4E+03 0 -5.9
240e Yes -46 1.5E+03 0 0
240n Yes -46 1.5E+03 0 0
241e Yes -46 1.4E+03 0 -5.9
241n Yes -46 1.4E+03 0 -5.9
242e Yes -46 1.4E+03 0 -5.9
242n Yes -46 1.4E+03 0 -5.9
243e Yes -46 1.4E+03 0 -5.9
243n Yes -46 1.4E+03 0 -5.9
244e Yes -46 1.4E+03 0 -5.9
244n Yes -46 1.4E+03 0 -5.9
245e Yes -46 1.4E+03 0 -5.9
245n Yes -46 1.4E+03 0 -5.9
246e Yes -46 1.4E+03 0 -5.9
246n Yes -46 1.4E+03 0 -5.9
250e Yes -46 1.4E+03 0 -5.9
250n Yes -46 1.4E+03 0 -5.9
251e Yes -46 1.4E+03 0 -5.9
251n Yes -46 1.4E+03 0 -5.9
252e Yes -46 1.4E+03 0 -5.9
252n Yes -46 1.4E+03 0 -5.9
253e Yes -46 1.4E+03 0 -5.9
253n Yes -46 1.4E+03 0 -5.9
254e Yes -46 1.4E+03 0 -5.9
254n Yes -46 1.4E+03 0 -5.9
255e Yes -46 1.4E+03 0 -5.9
255n Yes -46 1.4E+03 0 -5.9
256e Yes -46 1.4E+03 0 -5.9
256n Yes -46 1.4E+03 0 -5.9
257e Yes -46 1.5E+03 0 0
257n Yes -46 1.5E+03 0 0
261e Yes -46 1.4E+03 0 -5.9
261n Yes -46 1.4E+03 0 -5.9
262e Yes -46 1.4E+03 0 -5.9
262n Yes -46 1.4E+03 0 -5.9
266e Yes -46 1.4E+03 0 -5.9
266n Yes -46 1.4E+03 0 -5.9
267e Yes -46 1.4E+03 0 -5.9
267n Yes -46 1.4E+03 0 -5.9
268e Yes -46 1.4E+03 0 -5.9
268n Yes -46 1.4E+03 0 -5.9
269e Yes -46 1.4E+03 0 -5.9
269n Yes -46 1.4E+03 0 -5.9
270e Yes -46 1.5E+03 0 0
270n Yes -46 1.5E+03 0 0
271e Yes -46 1.5E+03 0 0
271n Yes -46 1.5E+03 0 0
272e Yes -46 1.5E+03 0 0
272n Yes -46 1.5E+03 0 0
273e Yes -46 1.5E+03 0 0
273n Yes -46 1.5E+03 0 0
277e Yes -46 1.4E+03 0 -5.9
277n Yes -46 1.4E+03 0 -5.9
278e Yes -46 1.4E+03 0 -5.9
278n Yes -46 1.4E+03 0 -5.9
281e Yes -46 1.4E+03 0 -5.9
281n Yes -46 1.4E+03 0 -5.9
282e Yes -46 1.4E+03 0 -5.9
282n Yes -46 1.4E+03 0 -5.9
283e Yes -46 1.4E+03 0 -5.9
283n Yes -46 1.4E+03 0 -5.9
284e Yes -46 1.5E+03 0 0
284n Yes -46 1.5E+03 0 0
285e Yes -46 1.5E+03 0 0
285n Yes -46 1.5E+03 0 0
286e Yes -46 1.5E+03 0 0
286n Yes -46 1.5E+03 0 0
287e Yes -46 1.5E+03 0 0
287n Yes -46 1.5E+03 0 0
290e Yes -46 1.4E+03 0 -5.9
290n Yes -46 1.4E+03 0 -5.9
291e Yes -46 1.4E+03 0 -5.9
291n Yes -46 1.4E+03 0 -6
292e Yes -46 1.4E+03 0 -5.9
292n Yes -46 1.4E+03 0 -5.9
293e Yes -46 1.4E+03 0 -5.9
293n Yes -46 1.4E+03 0 -5.9
294e Yes -46 1.4E+03 0 -5.9
294n Yes -46 1.4E+03 0 -5.9
295e Yes -46 1.4E+03 0 -5.9
295n Yes -46 1.4E+03 0 -5.9
299e No 0.63 0.34 -46 1.5E+03 27 0.61
299n No 0.67 0.34 -46 1.5E+03 16 0.6
300e No 0.6 0.23 -46 1.5E+03 14 0.6
300n No 0.57 0.23 -46 1.5E+03 23 1.3
301e No 0.61 0.35 -46 1.5E+03 32 0.69
301n No 0.67 0.35 -46 1.5E+03 14 0.61
302e No 0.49 0.44 -46 1.5E+03 5 0.82
302n No 0.71 0.44 -46 1.5E+03 18 0.59
303e Yes -46 1.4E+03 0 -5.9
303n Yes -46 1.4E+03 0 -5.9
304e Yes -46 1.4E+03 0 -5.9
304n Yes -46 1.4E+03 0 -5.9
305e Yes -46 1.4E+03 0 -5.9
305n Yes -46 1.4E+03 0 -5.9
306e Yes -46 1.4E+03 0 -5.9
306n Yes -46 1.4E+03 0 -5.9
307e Yes -46 1.4E+03 0 -5.9
307n Yes -46 1.4E+03 0 -5.9
311e No 0.59 0.3 -46 1.5E+03 16 0.62
311n No 0.66 0.3 -46 1.5E+03 68 0.48
312e No 0.41 0.33 -46 1.5E+03 20 0.65
312n No 0.12 0.33 -46 1.5E+03 2.8 0.95
313e No 0.52 0.39 -46 1.5E+03 40 1
313n No 0.076 0.39 -46 1.5E+03 2.9 0.97
314e No 0.57 0.28 -46 1.5E+03 7.8 0.74
314n No 0.62 0.28 -46 1.5E+03 8.6 0.7
315e Yes -46 1.4E+03 0 -5.9
315n Yes -46 1.4E+03 0 -5.9
316e Yes -46 1.4E+03 0 -5.9
316n Yes -46 1.4E+03 0 -5.9
317e Yes -46 1.4E+03 0 -5.9
317n Yes -46 1.4E+03 0 -5.9
318e Yes -46 1.4E+03 0 -5.9
318n Yes -46 1.4E+03 0 -5.9
319e Yes -46 1.4E+03 0 -5.9
319n Yes -46 1.4E+03 0 -5.9
320e Yes -46 1.4E+03 0 -5.9
320n Yes -46 1.4E+03 0 -5.9
321e Yes -46 1.4E+03 0 -5.9
321n Yes -46 1.4E+03 0 -5.9
322e Yes -46 1.4E+03 0 -5.9
322n Yes -46 1.4E+03 0 -5.9
323e Yes -46 1.4E+03 0 -5.9
323n Yes -46 1.4E+03 0 -5.9
324e Yes -46 1.4E+03 0 -5.9
324n Yes -46 1.4E+03 0 -5.9
325e Yes -46 1.4E+03 0 -5.9
325n Yes -46 1.4E+03 0 -5.9
326e Yes -46 1.4E+03 0 -5.9
326n Yes -46 1.4E+03 0 -5.9
327e Yes -46 1.4E+03 0 -5.9
327n Yes -46 1.4E+03 0 -5.9
328e Yes -46 1.4E+03 0 -5.9
328n Yes -46 1.4E+03 0 -5.9
329e Yes -46 1.4E+03 0 -5.9
329n Yes -46 1.4E+03 0 -5.9
331e Yes -46 1.4E+03 0 -5.9
331n Yes -46 1.4E+03 0 -5.9
332e Yes -46 1.4E+03 0 -5.9
332n Yes -46 1.4E+03 0 -5.9
333e Yes -46 1.4E+03 0 -5.9
333n Yes -46 1.4E+03 0 -5.9
336e Yes -46 1.4E+03 0 -5.9
336n Yes -46 1.4E+03 0 -5.9
339e Yes -46 1.5E+03 0 0
339n Yes -46 1.5E+03 0 0
340e Yes -46 1.4E+03 0 -5.9
340n Yes -46 1.4E+03 0 -5.9
342e No 0.51 0.39 -46 1.5E+03 17 0.62
342n No 0.58 0.39 -46 1.5E+03 27 0.59
343e No 0.61 0.41 -46 1.5E+03 76 0.48
343n No 0.58 0.41 -46 1.5E+03 73 0.48
345e Yes -46 1.5E+03 0 0
345n Yes -46 1.5E+03 0 0
346e No 0.15 0.026 -46 1.5E+03 3.3 0.92
346n No 0.16 0.026 -46 1.5E+03 2.7 0.95
347e No 0.029 0.0078 -46 1.5E+03 3.2 0.91
347n No 0.047 0.0078 -46 1.5E+03 2.8 0.94
In [59]:
# Save antenna classification table as a csv
if SAVE_RESULTS:
    for ind, col in zip(np.arange(len(df.columns), 0, -1), df_classes.columns[::-1]):
        df.insert(int(ind), col + ' Class', df_classes[col])
    df.to_csv(ANTCLASS_FILE)    
In [60]:
print('Final Ant-Pol Classification:\n\n', overall_class)
Final Ant-Pol Classification:

 Jee:
----------
bad (299 antpols):
3, 4, 5, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 21, 22, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 250, 251, 252, 253, 254, 255, 256, 257, 261, 262, 266, 267, 268, 269, 270, 271, 272, 273, 277, 278, 281, 282, 283, 284, 285, 286, 287, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 336, 339, 340, 342, 343, 345, 346, 347


Jnn:
----------
bad (299 antpols):
3, 4, 5, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 21, 22, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 250, 251, 252, 253, 254, 255, 256, 257, 261, 262, 266, 267, 268, 269, 270, 271, 272, 273, 277, 278, 281, 282, 283, 284, 285, 286, 287, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 336, 339, 340, 342, 343, 345, 346, 347

Save calibration solutions¶

In [61]:
if not all_flagged():
    # update flags in omnical gains and visibility solutions
    for ant in omni_flags:
        omni_flags[ant] |= rfi_flags
    for bl in vissol_flags:
        vissol_flags[bl] |= rfi_flags
All antennas are flagged, so this cell is being skipped.
In [62]:
if SAVE_RESULTS:
    add_to_history = 'Produced by file_calibration notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65    
    
    if not all_flagged():
        hd_vissol = io.HERAData(SUM_FILE)
        hc_omni = hd_vissol.init_HERACal(gain_convention='divide', cal_style='redundant')
        hc_omni.pol_convention = hd_auto_model.pol_convention
        hc_omni.gain_scale = hd_auto_model.vis_units
        hc_omni.update(gains=sol.gains, flags=omni_flags, quals=meta['chisq_per_ant'], total_qual=meta['chisq'])
        hc_omni.history += add_to_history
        hc_omni.write_calfits(OMNICAL_FILE, clobber=True)
        del hc_omni
        malloc_trim()
        
        if SAVE_OMNIVIS_FILE:
            # output results, harmonizing keys over polarizations
            all_reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn', 'en', 'ne'], pol_mode='4pol', bl_error_tol=2.0)
            bl_to_red_map = {bl: red[0] for red in all_reds for bl in red}
            hd_vissol.read(bls=[bl_to_red_map[bl] for bl in sol.vis], return_data=False)
            hd_vissol.empty_arrays()
            hd_vissol.history += add_to_history
            hd_vissol.update(data={bl_to_red_map[bl]: sol.vis[bl] for bl in sol.vis}, 
                             flags={bl_to_red_map[bl]: vissol_flags[bl] for bl in vissol_flags}, 
                             nsamples={bl_to_red_map[bl]: vissol_nsamples[bl] for bl in vissol_nsamples})
            hd_vissol.pol_convention = hd_auto_model.pol_convention
            hd_vissol.vis_units = hd_auto_model.vis_units
            hd_vissol.write_uvh5(OMNIVIS_FILE, clobber=True)
    
        del hd_vissol
        malloc_trim()        
All antennas are flagged, so this cell is being skipped.

Output fully flagged calibration file if OMNICAL_FILE is not written¶

In [63]:
if SAVE_RESULTS and not os.path.exists(OMNICAL_FILE):
    print(f'WARNING: No calibration file produced at {OMNICAL_FILE}. Creating a fully-flagged placeholder calibration file.')
    hd_writer = io.HERAData(SUM_FILE)
    # create fully flagged unit gains with chi^2 = 0
    hc_omni = hd_writer.init_HERACal(gain_convention='divide', cal_style='redundant')
    hc_omni.history += add_to_history
    hc_omni.pol_convention = hd_auto_model.pol_convention
    hc_omni.gain_scale = hd_auto_model.vis_units
    hc_omni.write_calfits(OMNICAL_FILE, clobber=True)
    del hc_omni
WARNING: No calibration file produced at /mnt/sn1/data1/2460951/zen.2460951.50977.sum.omni.calfits. Creating a fully-flagged placeholder calibration file.

Output empty visibility file if OMNIVIS_FILE is not written¶

In [64]:
if SAVE_RESULTS and SAVE_OMNIVIS_FILE and not os.path.exists(OMNIVIS_FILE):
    print(f'WARNING: No omnivis file produced at {OMNIVIS_FILE}. Creating an empty visibility solution file.')
    hd_writer = io.HERAData(SUM_FILE)
    hd_writer.initialize_uvh5_file(OMNIVIS_FILE, clobber=True)

Metadata¶

In [65]:
for repo in ['pyuvdata', 'hera_cal', 'hera_filters', 'hera_qm', 'hera_notebook_templates']:
    exec(f'from {repo} import __version__')
    print(f'{repo}: {__version__}')
pyuvdata: 3.2.5.dev1+g5a985ae31
hera_cal: 3.7.7.dev68+g3286222d3
hera_filters: 0.1.7
hera_qm: 2.2.1.dev4+gf6d02113b
hera_notebook_templates: 0.1.dev989+gee0995d
In [66]:
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 1.99 minutes.