Single File Calibration¶

by Josh Dillon, Aaron Parsons, Tyler Cox, and Zachary Martinot, last updated August 11, 2025

This notebook is designed to infer as much information about the array from a single file, including pushing the calibration and RFI mitigation as far as possible. Calibration includes redundant-baseline calibration, RFI-based calibration of delay slopes, model-based calibration of overall amplitudes, and a full per-frequency phase gradient absolute calibration if abscal model files are available.

Here's a set of links to skip to particular figures and tables:

• Figure 1: RFI Flagging¶

• Figure 2: Plot of autocorrelations with classifications¶

• Figure 3: Summary of antenna classifications prior to calibration¶

• Figure 4: Redundant calibration of a single baseline group¶

• Figure 5: Absolute calibration of redcal degeneracies¶

• Figure 6: Relative Phase Calibration¶

• Figure 7: chi^2 per antenna across the array¶

• Figure 8: Summary of antenna classifications after redundant calibration¶

• Table 1: Complete summary of per antenna classifications¶

In [1]:
import time
tstart = time.time()
!hostname
gpu1.rtp.pvt
In [2]:
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin  # REQUIRED to have the compression plugins available
import numpy as np
from scipy import constants, interpolate
import copy
import glob
import re
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
pd.set_option('display.max_rows', 1000)
from uvtools.plot import plot_antpos, plot_antclass
from hera_qm import ant_metrics, ant_class, xrfi
from hera_cal import io, utils, redcal, apply_cal, datacontainer, abscal
from hera_filters import dspec
from hera_notebook_templates.data import DATA_PATH as HNBT_DATA
from IPython.display import display, HTML
import linsolve
display(HTML("<style>.container { width:100% !important; }</style>"))
_ = np.seterr(all='ignore')  # get rid of red warnings
%config InlineBackend.figure_format = 'retina'
In [3]:
# this enables better memory management on linux
import ctypes
def malloc_trim():
    try:
        ctypes.CDLL('libc.so.6').malloc_trim(0) 
    except OSError:
        pass

Parse inputs and outputs¶

To use this notebook interactively, you will have to provide a sum filename path if none exists as an environment variable. All other parameters have reasonable default values.

In [4]:
# figure out whether to save results
SAVE_RESULTS = os.environ.get("SAVE_RESULTS", "TRUE").upper() == "TRUE"
SAVE_OMNIVIS_FILE = os.environ.get("SAVE_OMNIVIS_FILE", "FALSE").upper() == "TRUE"

# get infile names
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/lustre/aoc/projects/hera/h6c-analysis/IDR2/2459867/zen.2459867.46002.sum.uvh5' # If sum_file is not defined in the environment variables, define it here.
USE_DIFF = os.environ.get("USE_DIFF", "TRUE").upper() == "TRUE"
if USE_DIFF:
    DIFF_FILE = SUM_FILE.replace('sum', 'diff')
else:
    DIFF_FILE = None
    RTP_ANTCLASS = SUM_FILE.replace('.uvh5', '.rtp_ant_class.csv')
VALIDATION = os.environ.get("VALIDATION", "FALSE").upper() == "TRUE"

# get outfilenames
AM_FILE = (SUM_FILE.replace('.uvh5', '.ant_metrics.hdf5') if SAVE_RESULTS else None)
ANTCLASS_FILE = (SUM_FILE.replace('.uvh5', '.ant_class.csv') if SAVE_RESULTS else None)
OMNICAL_FILE = (SUM_FILE.replace('.uvh5', '.omni.calfits') if SAVE_RESULTS else None)
OMNIVIS_FILE = (SUM_FILE.replace('.uvh5', '.omni_vis.uvh5') if SAVE_RESULTS else None)

for fname in ['SUM_FILE', 'DIFF_FILE', 'AM_FILE', 'ANTCLASS_FILE', 'OMNICAL_FILE', 'OMNIVIS_FILE', 
              'SAVE_RESULTS', 'SAVE_OMNIVIS_FILE', 'USE_DIFF', 'VALIDATION']:
    print(f"{fname} = '{eval(fname)}'")
SUM_FILE = '/mnt/sn1/data1/2460989/zen.2460989.43846.sum.uvh5'
DIFF_FILE = '/mnt/sn1/data1/2460989/zen.2460989.43846.diff.uvh5'
AM_FILE = '/mnt/sn1/data1/2460989/zen.2460989.43846.sum.ant_metrics.hdf5'
ANTCLASS_FILE = '/mnt/sn1/data1/2460989/zen.2460989.43846.sum.ant_class.csv'
OMNICAL_FILE = '/mnt/sn1/data1/2460989/zen.2460989.43846.sum.omni.calfits'
OMNIVIS_FILE = '/mnt/sn1/data1/2460989/zen.2460989.43846.sum.omni_vis.uvh5'
SAVE_RESULTS = 'True'
SAVE_OMNIVIS_FILE = 'False'
USE_DIFF = 'True'
VALIDATION = 'False'

Parse settings¶

Load settings relating to the operation of the notebook, then print what was loaded (or default).

In [5]:
# parse plotting settings
PLOT = os.environ.get("PLOT", "TRUE").upper() == "TRUE"
if PLOT:
    %matplotlib inline

# parse omnical settings
OC_MAX_DIMS = int(os.environ.get("OC_MAX_DIMS", 4))
OC_MIN_DIM_SIZE = int(os.environ.get("OC_MIN_DIM_SIZE", 8))
OC_SKIP_OUTRIGGERS = os.environ.get("OC_SKIP_OUTRIGGERS", "TRUE").upper() == "TRUE"
OC_MIN_BL_LEN = float(os.environ.get("OC_MIN_BL_LEN", 1))
OC_MAX_BL_LEN = float(os.environ.get("OC_MAX_BL_LEN", 1e100))
OC_MAXITER = int(os.environ.get("OC_MAXITER", 50))
OC_MAX_RERUN = int(os.environ.get("OC_MAX_RERUN", 10))
OC_RERUN_MAXITER = int(os.environ.get("OC_MAXITER", 50))
OC_MAX_CHISQ_FLAGGING_DYNAMIC_RANGE = float(os.environ.get("OC_MAX_CHISQ_FLAGGING_DYNAMIC_RANGE", 1))
OC_USE_PRIOR_SOL = os.environ.get("OC_USE_PRIOR_SOL", "FALSE").upper() == "TRUE"
OC_PRIOR_SOL_FLAG_THRESH = float(os.environ.get("OC_PRIOR_SOL_FLAG_THRESH", .95))
OC_USE_GPU = os.environ.get("SAVE_RESULTS", "FALSE").upper() == "TRUE"

# parse RFI settings
RFI_DPSS_HALFWIDTH = float(os.environ.get("RFI_DPSS_HALFWIDTH", 300e-9))
RFI_NSIG = float(os.environ.get("RFI_NSIG", 4))

# parse abscal settings
ABSCAL_MODEL_FILES_GLOB = os.environ.get("ABSCAL_MODEL_FILES_GLOB", None)
ABSCAL_MIN_BL_LEN = float(os.environ.get("ABSCAL_MIN_BL_LEN", 1.0))
ABSCAL_MAX_BL_LEN = float(os.environ.get("ABSCAL_MAX_BL_LEN", 140.0))
CALIBRATE_CROSS_POLS = os.environ.get("CALIBRATE_CROSS_POLS", "FALSE").upper() == "TRUE"

# print settings
for setting in ['PLOT', 'OC_MAX_DIMS', 'OC_MIN_DIM_SIZE', 'OC_SKIP_OUTRIGGERS', 
                'OC_MIN_BL_LEN', 'OC_MAX_BL_LEN', 'OC_MAXITER', 'OC_MAX_RERUN', 'OC_RERUN_MAXITER', 
                'OC_MAX_CHISQ_FLAGGING_DYNAMIC_RANGE', 'OC_USE_PRIOR_SOL', 'OC_PRIOR_SOL_FLAG_THRESH', 
                'OC_USE_GPU', 'RFI_DPSS_HALFWIDTH', 'RFI_NSIG', 'ABSCAL_MODEL_FILES_GLOB', 
                'ABSCAL_MIN_BL_LEN', 'ABSCAL_MAX_BL_LEN', "CALIBRATE_CROSS_POLS"]:
    print(f'{setting} = {eval(setting)}')
PLOT = True
OC_MAX_DIMS = 4
OC_MIN_DIM_SIZE = 8
OC_SKIP_OUTRIGGERS = True
OC_MIN_BL_LEN = 1.0
OC_MAX_BL_LEN = 140.0
OC_MAXITER = 50
OC_MAX_RERUN = 10
OC_RERUN_MAXITER = 50
OC_MAX_CHISQ_FLAGGING_DYNAMIC_RANGE = 1.5
OC_USE_PRIOR_SOL = True
OC_PRIOR_SOL_FLAG_THRESH = 0.95
OC_USE_GPU = False
RFI_DPSS_HALFWIDTH = 3e-07
RFI_NSIG = 4.0
ABSCAL_MODEL_FILES_GLOB = None
ABSCAL_MIN_BL_LEN = 1.0
ABSCAL_MAX_BL_LEN = 140.0
CALIBRATE_CROSS_POLS = True

Parse bounds¶

Load settings related to classifying antennas as good, suspect, or bad, then print what was loaded (or default).

In [6]:
# ant_metrics bounds for low correlation / dead antennas
am_corr_bad = (0, float(os.environ.get("AM_CORR_BAD", 0.35)))
am_corr_suspect = (float(os.environ.get("AM_CORR_BAD", 0.35)), float(os.environ.get("AM_CORR_SUSPECT", 0.45)))

# ant_metrics bounds for cross-polarized antennas
am_xpol_bad = (-1, float(os.environ.get("AM_XPOL_BAD", -0.1)))
am_xpol_suspect = (float(os.environ.get("AM_XPOL_BAD", -0.1)), float(os.environ.get("AM_XPOL_SUSPECT", 0)))

# bounds on solar altitude (in degrees)
good_solar_altitude = (-90, float(os.environ.get("SUSPECT_SOLAR_ALTITUDE", 0)))
suspect_solar_altitude = (float(os.environ.get("SUSPECT_SOLAR_ALTITUDE", 0)), 90)

# bounds on zeros in spectra
good_zeros_per_eo_spectrum = (0, int(os.environ.get("MAX_ZEROS_PER_EO_SPEC_GOOD", 2)))
suspect_zeros_per_eo_spectrum = (0, int(os.environ.get("MAX_ZEROS_PER_EO_SPEC_SUSPECT", 8)))

# bounds on autocorrelation power
auto_power_good = (float(os.environ.get("AUTO_POWER_GOOD_LOW", 5)), float(os.environ.get("AUTO_POWER_GOOD_HIGH", 30)))
auto_power_suspect = (float(os.environ.get("AUTO_POWER_SUSPECT_LOW", 1)), float(os.environ.get("AUTO_POWER_SUSPECT_HIGH", 60)))

# bounds on autocorrelation slope
auto_slope_good = (float(os.environ.get("AUTO_SLOPE_GOOD_LOW", -0.4)), float(os.environ.get("AUTO_SLOPE_GOOD_HIGH", 0.4)))
auto_slope_suspect = (float(os.environ.get("AUTO_SLOPE_SUSPECT_LOW", -0.6)), float(os.environ.get("AUTO_SLOPE_SUSPECT_HIGH", 0.6)))

# bounds on autocorrelation RFI
auto_rfi_good = (0, float(os.environ.get("AUTO_RFI_GOOD", 1.5)))
auto_rfi_suspect = (0, float(os.environ.get("AUTO_RFI_SUSPECT", 2)))

# bounds on autocorrelation shape
auto_shape_good = (0, float(os.environ.get("AUTO_SHAPE_GOOD", 0.1)))
auto_shape_suspect = (0, float(os.environ.get("AUTO_SHAPE_SUSPECT", 0.2)))

# bound on per-xengine non-noiselike power in diff
bad_xengine_zcut = float(os.environ.get("BAD_XENGINE_ZCUT", 10.0))

# bounds on chi^2 per antenna in omnical
oc_cspa_good = (0, float(os.environ.get("OC_CSPA_GOOD", 2)))
oc_cspa_suspect = (0, float(os.environ.get("OC_CSPA_SUSPECT", 3)))

# print bounds
for bound in ['am_corr_bad', 'am_corr_suspect', 'am_xpol_bad', 'am_xpol_suspect', 
              'good_solar_altitude', 'suspect_solar_altitude',
              'good_zeros_per_eo_spectrum', 'suspect_zeros_per_eo_spectrum',
              'auto_power_good', 'auto_power_suspect', 'auto_slope_good', 'auto_slope_suspect',
              'auto_rfi_good', 'auto_rfi_suspect', 'auto_shape_good', 'auto_shape_suspect',
              'bad_xengine_zcut', 'oc_cspa_good', 'oc_cspa_suspect']:
    print(f'{bound} = {eval(bound)}')
am_corr_bad = (0, 0.35)
am_corr_suspect = (0.35, 0.45)
am_xpol_bad = (-1, -0.1)
am_xpol_suspect = (-0.1, 0.0)
good_solar_altitude = (-90, 0.0)
suspect_solar_altitude = (0.0, 90)
good_zeros_per_eo_spectrum = (0, 2)
suspect_zeros_per_eo_spectrum = (0, 8)
auto_power_good = (5.0, 30.0)
auto_power_suspect = (1.0, 60.0)
auto_slope_good = (-0.4, 0.4)
auto_slope_suspect = (-0.6, 0.6)
auto_rfi_good = (0, 1.5)
auto_rfi_suspect = (0, 2.0)
auto_shape_good = (0, 0.1)
auto_shape_suspect = (0, 0.2)
bad_xengine_zcut = 10.0
oc_cspa_good = (0, 2.0)
oc_cspa_suspect = (0, 3.0)

Load sum and diff data¶

In [7]:
read_start = time.time()
hd = io.HERADataFastReader(SUM_FILE)
data, _, _ = hd.read(read_flags=False, read_nsamples=False)
if USE_DIFF:
    hd_diff = io.HERADataFastReader(DIFF_FILE)
    diff_data, _, _ = hd_diff.read(read_flags=False, read_nsamples=False, dtype=np.complex64, fix_autos_func=np.real)
print(f'Finished loading data in {(time.time() - read_start) / 60:.2f} minutes.')
Finished loading data in 0.72 minutes.
In [8]:
ants = sorted(set([ant for bl in hd.bls for ant in utils.split_bl(bl)]))
auto_bls = [bl for bl in data if (bl[0] == bl[1]) and (utils.split_pol(bl[2])[0] == utils.split_pol(bl[2])[1])]
antpols = sorted(set([ant[1] for ant in ants]))
In [9]:
# print basic information about the file
print(f'File: {SUM_FILE}')
print(f'JDs: {hd.times} ({np.median(np.diff(hd.times)) * 24 * 3600:.5f} s integrations)')
print(f'LSTS: {hd.lsts * 12 / np.pi } hours')
print(f'Frequencies: {len(hd.freqs)} {np.median(np.diff(hd.freqs)) / 1e6:.5f} MHz channels from {hd.freqs[0] / 1e6:.5f} to {hd.freqs[-1] / 1e6:.5f} MHz')
print(f'Antennas: {len(hd.data_ants)}')
print(f'Polarizations: {hd.pols}')
File: /mnt/sn1/data1/2460989/zen.2460989.43846.sum.uvh5
JDs: [2460989.43840702 2460989.43851887] (9.66368 s integrations)
LSTS: [3.2401658  3.24285751] hours
Frequencies: 1536 0.12207 MHz channels from 46.92078 to 234.29871 MHz
Antennas: 299
Polarizations: ['nn', 'ee', 'ne', 'en']

Classify good, suspect, and bad antpols¶

In [10]:
ALL_FLAGGED = False
def all_flagged():
    if ALL_FLAGGED:
        print('All antennas are flagged, so this cell is being skipped.')
    return ALL_FLAGGED

# initialize classes to None to help make Table 1 when everything is flagged
overall_class = None
am_totally_dead = None
am_corr = None
am_xpol = None
solar_class = None
zeros_class = None
auto_power_class = None
auto_slope_class = None
auto_rfi_class = None
auto_shape_class = None
xengine_diff_class = None
meta = None
redcal_class = None 

Load classifications that use diffs if diffs are not available¶

In [11]:
if not USE_DIFF:
    def read_antenna_classification(df, category):
        ac = ant_class.AntennaClassification()
        ac._data = {}
        for antname, class_data, antclass in zip(df['Antenna'], df[category], df[f'{category} Class']):
            try:        
                class_data = float(class_data)
            except:
                pass
            if isinstance(class_data, str) or np.isfinite(class_data):
                ant = (int(antname[:-1]), utils._comply_antpol(antname[-1]))
                ac[ant] = antclass
                ac._data[ant] = class_data
        return ac

    df = pd.read_csv(RTP_ANTCLASS)
    am_totally_dead = read_antenna_classification(df, 'Dead?')
    am_corr = read_antenna_classification(df, 'Low Correlation')
    am_xpol = read_antenna_classification(df, 'Cross-Polarized')
    zeros_class = read_antenna_classification(df, 'Even/Odd Zeros')
    xengine_diff_class = read_antenna_classification(df, 'Bad Diff X-Engines')

Run ant_metrics¶

This classifies antennas as cross-polarized, low-correlation, or dead. Such antennas are excluded from any calibration.

In [12]:
if USE_DIFF:
    am = ant_metrics.AntennaMetrics(SUM_FILE, DIFF_FILE, sum_data=data, diff_data=diff_data)
    am.iterative_antenna_metrics_and_flagging(crossCut=am_xpol_bad[1], deadCut=am_corr_bad[1])
    am.all_metrics = {}  # this saves time and disk by getting rid of per-iteration information we never use
    if SAVE_RESULTS:
        am.save_antenna_metrics(AM_FILE, overwrite=True)
In [13]:
if USE_DIFF:
    # Turn ant metrics into classifications
    totally_dead_ants = [ant for ant, i in am.xants.items() if i == -1]
    am_totally_dead = ant_class.AntennaClassification(good=[ant for ant in ants if ant not in totally_dead_ants], bad=totally_dead_ants)
    am_corr = ant_class.antenna_bounds_checker(am.final_metrics['corr'], bad=[am_corr_bad], suspect=[am_corr_suspect], good=[(0, 1)])
    am_xpol = ant_class.antenna_bounds_checker(am.final_metrics['corrXPol'], bad=[am_xpol_bad], suspect=[am_xpol_suspect], good=[(-1, 1)])
ant_metrics_class = am_totally_dead + am_corr + am_xpol
if np.all([ant_metrics_class[utils.split_bl(bl)[0]] == 'bad' for bl in auto_bls]):
    ALL_FLAGGED = True
    print('All antennas are flagged for ant_metrics.')

Mark sun-up (or high solar altitude) data as suspect¶

In [14]:
min_sun_alt = np.min(utils.get_sun_alt(hd.times))
solar_class = ant_class.antenna_bounds_checker({ant: min_sun_alt for ant in ants}, good=[good_solar_altitude], suspect=[suspect_solar_altitude])

Classify antennas responsible for 0s in visibilities as bad:¶

This classifier looks for X-engine failure or packet loss specific to an antenna which causes either the even visibilities (or the odd ones, or both) to be 0s.

In [15]:
if USE_DIFF:
    zeros_class = ant_class.even_odd_zeros_checker(data, diff_data, good=good_zeros_per_eo_spectrum, suspect=suspect_zeros_per_eo_spectrum)
if np.all([zeros_class[utils.split_bl(bl)[0]] == 'bad' for bl in auto_bls]):
    ALL_FLAGGED = True
    print('All antennas are flagged for too many even/odd zeros.')

Examine and classify autocorrelation power and slope¶

These classifiers look for antennas with too high or low power or to steep a slope.

In [16]:
auto_power_class = ant_class.auto_power_checker(data, good=auto_power_good, suspect=auto_power_suspect)
auto_slope_class = ant_class.auto_slope_checker(data, good=auto_slope_good, suspect=auto_slope_suspect, edge_cut=100, filt_size=17)
if np.all([(auto_power_class + auto_slope_class)[utils.split_bl(bl)[0]] == 'bad' for bl in auto_bls]):
    ALL_FLAGGED = True
    print('All antennas are flagged for bad autocorrelation power/slope.')
overall_class = auto_power_class + auto_slope_class + zeros_class + ant_metrics_class + solar_class

Find starting set of array flags¶

In [17]:
if not all_flagged():
    antenna_flags, array_flags = xrfi.flag_autos(data, flag_method="channel_diff_flagger", nsig=RFI_NSIG * 5, 
                                                 antenna_class=overall_class, flag_broadcast_thresh=.5)
    for key in antenna_flags:
        antenna_flags[key] = array_flags
    cache = {}
    _, array_flags = xrfi.flag_autos(data, freqs=data.freqs, flag_method="dpss_flagger",
                                     nsig=RFI_NSIG, antenna_class=overall_class,
                                     filter_centers=[0], filter_half_widths=[RFI_DPSS_HALFWIDTH],
                                     eigenval_cutoff=[1e-9], flags=antenna_flags, mode='dpss_matrix', 
                                     cache=cache, flag_broadcast_thresh=.5)

Classify antennas based on non-noiselike diffs¶

In [18]:
if not all_flagged():
    if USE_DIFF:
        xengine_diff_class = ant_class.non_noiselike_diff_by_xengine_checker(data, diff_data, flag_waterfall=array_flags, 
                                                                             antenna_class=overall_class, 
                                                                             xengine_chans=96, bad_xengine_zcut=bad_xengine_zcut)
        
        if np.all([overall_class[utils.split_bl(bl)[0]] == 'bad' for bl in auto_bls]):
            ALL_FLAGGED = True
            print('All antennas are flagged after flagging non-noiselike diffs.')
    overall_class += xengine_diff_class

Examine and classify autocorrelation excess RFI and shape, finding consensus RFI mask along the way¶

This classifier iteratively identifies antennas for excess RFI (characterized by RMS of DPSS-filtered autocorrelations after RFI flagging) and bad shape, as determined by a discrepancy with the mean good normalized autocorrelation's shape. Along the way, it iteratively discovers a conensus array-wide RFI mask.

In [19]:
def auto_bl_zscores(data, flag_array, cache={}):
    '''This function computes z-score arrays for each delay-filtered autocorrelation, normalized by the expected noise. 
    Flagged times/channels for the whole array are given 0 weight in filtering and are np.nan in the z-score.'''
    zscores = {}
    for bl in auto_bls:
        wgts = np.array(np.logical_not(flag_array), dtype=np.float64)
        model, _, _ = dspec.fourier_filter(hd.freqs, data[bl], wgts, filter_centers=[0], filter_half_widths=[RFI_DPSS_HALFWIDTH], mode='dpss_solve',
                                            suppression_factors=[1e-9], eigenval_cutoff=[1e-9], cache=cache)
        res = data[bl] - model
        int_time = 24 * 3600 * np.median(np.diff(data.times))
        chan_res = np.median(np.diff(data.freqs))
        int_count = int(int_time * chan_res)
        sigma = np.abs(model) / np.sqrt(int_count / 2)
        zscores[bl] = res / sigma    
        zscores[bl][flag_array] = np.nan

    return zscores
In [20]:
def rfi_from_avg_autos(data, auto_bls_to_use, prior_flags=None, nsig=RFI_NSIG):
    '''Average together all baselines in auto_bls_to_use, then find an RFI mask by looking for outliers after DPSS filtering.'''
    
    # If there are no good autos, return 100% flagged
    if len(auto_bls_to_use) == 0:
        return np.ones(data[next(iter(data))].shape, dtype=bool)
    
    # Compute int_count for all unflagged autocorrelations averaged together
    int_time = 24 * 3600 * np.median(np.diff(data.times_by_bl[auto_bls[0][0:2]]))
    chan_res = np.median(np.diff(data.freqs))
    int_count = int(int_time * chan_res) * len(auto_bls_to_use)
    avg_auto = {(-1, -1, 'ee'): np.mean([data[bl] for bl in auto_bls_to_use], axis=0)}
    
    # Flag RFI first with channel differences and then with DPSS
    antenna_flags, _ = xrfi.flag_autos(avg_auto, int_count=int_count, nsig=(nsig * 5))
    if prior_flags is not None:
        antenna_flags[(-1, -1, 'ee')] = prior_flags
    _, rfi_flags = xrfi.flag_autos(avg_auto, int_count=int_count, flag_method='dpss_flagger',
                                   flags=antenna_flags, freqs=data.freqs, filter_centers=[0],
                                   filter_half_widths=[RFI_DPSS_HALFWIDTH], eigenval_cutoff=[1e-9], nsig=nsig)

    return rfi_flags
In [21]:
# Iteratively develop RFI mask, excess RFI classification, and autocorrelation shape classification
if not all_flagged():
    stage = 1
    rfi_flags = np.array(array_flags)
    prior_end_states = set()
    while True:
        # compute DPSS-filtered z-scores with current array-wide RFI mask
        zscores = auto_bl_zscores(data, rfi_flags)
        rms = {bl: np.nanmean(zscores[bl]**2)**.5 if np.any(np.isfinite(zscores[bl])) else np.inf for bl in zscores}
        
        # figure out which autos to use for finding new set of flags
        candidate_autos = [bl for bl in auto_bls if overall_class[utils.split_bl(bl)[0]] != 'bad']
        if stage == 1:
            # use best half of the unflagged antennas
            med_rms = np.nanmedian([rms[bl] for bl in candidate_autos])
            autos_to_use = [bl for bl in candidate_autos if rms[bl] <= med_rms]
        elif stage == 2:
            # use all unflagged antennas which are auto RFI good, or the best half, whichever is larger
            med_rms = np.nanmedian([rms[bl] for bl in candidate_autos])
            best_half_autos = [bl for bl in candidate_autos if rms[bl] <= med_rms]
            good_autos = [bl for bl in candidate_autos if (overall_class[utils.split_bl(bl)[0]] != 'bad')
                          and (auto_rfi_class[utils.split_bl(bl)[0]] == 'good')]
            autos_to_use = (best_half_autos if len(best_half_autos) > len(good_autos) else good_autos)
        elif stage == 3:
            # use all unflagged antennas which are auto RFI good or suspect
            autos_to_use = [bl for bl in candidate_autos if (overall_class[utils.split_bl(bl)[0]] != 'bad')]
    
        # compute new RFI flags
        rfi_flags = rfi_from_avg_autos(data, autos_to_use)
    
        # perform auto shape and RFI classification
        overall_class = auto_power_class + auto_slope_class + zeros_class + ant_metrics_class + solar_class + xengine_diff_class
        auto_rfi_class = ant_class.antenna_bounds_checker(rms, good=auto_rfi_good, suspect=auto_rfi_suspect, bad=(0, np.inf))
        overall_class += auto_rfi_class
        auto_shape_class = ant_class.auto_shape_checker(data, good=auto_shape_good, suspect=auto_shape_suspect,
                                                        flag_spectrum=np.sum(rfi_flags, axis=0).astype(bool), 
                                                        antenna_class=overall_class)
        overall_class += auto_shape_class
        
        # check for convergence by seeing whether we've previously gotten to this number of flagged antennas and channels
        if stage == 3:
            if (len(overall_class.bad_ants), np.sum(rfi_flags)) in prior_end_states:
                break
            prior_end_states.add((len(overall_class.bad_ants), np.sum(rfi_flags)))
        else:
            stage += 1
In [22]:
auto_class = auto_power_class + auto_slope_class
if auto_rfi_class is not None:
    auto_class += auto_rfi_class
if auto_shape_class is not None:
    auto_class += auto_rfi_class
if np.all([overall_class[utils.split_bl(bl)[0]] == 'bad' for bl in auto_bls]):
    ALL_FLAGGED = True
    print('All antennas are flagged after flagging for bad autos power/slope/rfi/shape.')
All antennas are flagged after flagging for bad autos power/slope/rfi/shape.
In [23]:
if not all_flagged():
    def rfi_plot(cls, flags=rfi_flags):
        avg_auto = {(-1, -1, 'ee'): np.mean([data[bl] for bl in auto_bls if not cls[utils.split_bl(bl)[0]] == 'bad'], axis=0)}
        plt.figure(figsize=(12, 5), dpi=100)
        plt.semilogy(hd.freqs / 1e6, np.where(flags, np.nan, avg_auto[(-1, -1, 'ee')])[0], label = 'Average Good or Suspect Autocorrelation', zorder=100)
        plt.semilogy(hd.freqs / 1e6, np.where(False, np.nan, avg_auto[(-1, -1, 'ee')])[0], 'r', lw=.5, label=f'{np.sum(flags[0])} Channels Flagged for RFI')
        plt.legend()
        plt.xlabel('Frequency (MHz)')
        plt.ylabel('Uncalibrated Autocorrelation')
        plt.tight_layout()
All antennas are flagged, so this cell is being skipped.

Figure 1: RFI Flagging¶

This figure shows RFI identified using the average of all autocorrelations---excluding bad antennas---for the first integration in the file.

In [24]:
if PLOT and not all_flagged(): rfi_plot(overall_class)
All antennas are flagged, so this cell is being skipped.
In [25]:
def autocorr_plot(cls):    
    fig, axes = plt.subplots(1, 2, figsize=(14, 5), dpi=100, sharey=True, gridspec_kw={'wspace': 0})
    labels = []
    colors = ['darkgreen', 'goldenrod', 'maroon']
    for ax, pol in zip(axes, antpols):
        for ant in cls.ants:
            if ant[1] == pol:
                color = colors[cls.quality_classes.index(cls[ant])]
                ax.semilogy(np.mean(data[utils.join_bl(ant, ant)], axis=0), color=color, lw=.5)
        ax.set_xlabel('Channel', fontsize=12)
        ax.set_title(f'{utils.join_pol(pol, pol)}-Polarized Autos')

    axes[0].set_ylabel('Raw Autocorrelation', fontsize=12)
    axes[1].legend([matplotlib.lines.Line2D([0], [0], color=color) for color in colors], 
                   [cl.capitalize() for cl in cls.quality_classes], ncol=1, fontsize=12, loc='upper right', framealpha=1)
    plt.tight_layout()

Figure 2: Plot of autocorrelations with classifications¶

This figure shows a plot of all autocorrelations in the array, split by polarization. Antennas are classified based on their autocorrelations into good, suspect, and bad, by examining power, slope, and RFI-occupancy.

In [26]:
if PLOT and not all_flagged(): autocorr_plot(auto_class)
All antennas are flagged, so this cell is being skipped.

Summarize antenna classification prior to redundant-baseline calibration¶

In [27]:
def array_class_plot(cls, extra_label=""):
    outriggers = [ant for ant in hd.data_ants if ant >= 320]

    if len(outriggers) > 0:
        fig, axes = plt.subplots(1, 2, figsize=(14, 6), dpi=100, gridspec_kw={'width_ratios': [2, 1]})
        plot_antclass(hd.antpos, cls, ax=axes[0], ants=[ant for ant in hd.data_ants if ant < 320], legend=False, title=f'HERA Core{extra_label}')
        plot_antclass(hd.antpos, cls, ax=axes[1], ants=outriggers, radius=50, title='Outriggers')
    else:
        fig, axes = plt.subplots(1, 1, figsize=(9, 6), dpi=100)
        plot_antclass(hd.antpos, cls, ax=axes, ants=[ant for ant in hd.data_ants if ant < 320], legend=False, title=f'HERA Core{extra_label}')

Figure 3: Summary of antenna classifications prior to calibration¶

This figure shows the location and classification of all antennas prior to calibration. Antennas are split along the diagonal, with ee-polarized antpols represented by the southeast half of each antenna and nn-polarized antpols represented by the northwest half. Outriggers are split from the core and shown at exaggerated size in the right-hand panel. This classification includes ant_metrics, a count of the zeros in the even or odd visibilities, and autocorrelation power, slope, and RFI occupancy. An antenna classified as bad in any classification will be considered bad. An antenna marked as suspect any in any classification will be considered suspect unless it is also classified as bad elsewhere.

In [28]:
if PLOT and not all_flagged(): array_class_plot(overall_class)
All antennas are flagged, so this cell is being skipped.
In [29]:
# delete diffs to save memory
if USE_DIFF:
    del diff_data, hd_diff
try:
    del cache
except NameError:
    pass
malloc_trim()

Perform redundant-baseline calibration¶

In [30]:
def classify_off_grid(reds, all_ants):
    '''Returns AntennaClassification of all_ants where good ants are in reds while bad ants are not.'''
    ants_in_reds = set([ant for red in reds for bl in red for ant in utils.split_bl(bl)])
    on_grid = [ant for ant in all_ants if ant in ants_in_reds]
    off_grid = [ant for ant in all_ants if ant not in ants_in_reds]
    return ant_class.AntennaClassification(good=on_grid, bad=off_grid)
In [31]:
def per_pol_filter_reds(reds, pols=['nn', 'ee'], **kwargs):
    '''Performs redcal filtering separately on polarizations (which might have different min_dim_size issues).'''
    return [red for pol in pols for red in redcal.filter_reds(copy.deepcopy(reds), pols=[pol], **kwargs)]
In [32]:
def check_if_whole_pol_flagged(redcal_class, pols=['Jee', 'Jnn']):
    '''Checks if an entire polarization is flagged. If it is, returns True and marks all antennas as bad in redcal_class.'''
    if np.logical_or(*[np.all([redcal_class[ant] == 'bad' for ant in redcal_class.ants if ant[1] == pol]) for pol in pols]):
        print('An entire polarization has been flagged. Stopping redcal.')
        for ant in redcal_class:
            redcal_class[ant] = 'bad'
        return True
    return False
In [33]:
def recheck_chisq(cspa, sol, cutoff, avg_alg):
    '''Recompute chisq per ant without apparently bad antennas to see if any antennas get better.'''
    avg_cspa = {ant: avg_alg(np.where(rfi_flags, np.nan, cspa[ant])) for ant in cspa}
    sol2 = redcal.RedSol(sol.reds, gains={ant: sol[ant] for ant in avg_cspa if avg_cspa[ant] <= cutoff}, vis=sol.vis)
    new_chisq_per_ant = {ant: np.array(cspa[ant]) for ant in sol2.gains}
    if len(set([bl[2] for red in per_pol_filter_reds(sol2.reds, ants=sol2.gains.keys(), antpos=hd.data_antpos, **fr_settings) for bl in red])) >= 2:
        redcal.expand_omni_gains(sol2, sol2.reds, data, chisq_per_ant=new_chisq_per_ant)
    for ant in avg_cspa:
        if ant in new_chisq_per_ant:
            if np.any(np.isfinite(new_chisq_per_ant[ant])):
                if not np.all(np.isclose(new_chisq_per_ant[ant], 0)):
                    new_avg_cspa = avg_alg(np.where(rfi_flags, np.nan, cspa[ant]))
                    if new_avg_cspa > 0:
                        avg_cspa[ant] = np.min([avg_cspa[ant], new_avg_cspa])
    return avg_cspa

Perform iterative redcal¶

In [34]:
# figure out and filter reds and classify antennas based on whether or not they are on the main grid
if not all_flagged():
    fr_settings = {'max_dims': OC_MAX_DIMS, 'min_dim_size': OC_MIN_DIM_SIZE, 'min_bl_cut': OC_MIN_BL_LEN, 'max_bl_cut': OC_MAX_BL_LEN}
    reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol', bl_error_tol=2.0)
    reds = per_pol_filter_reds(reds, ex_ants=overall_class.bad_ants, antpos=hd.data_antpos, **fr_settings)
    if OC_SKIP_OUTRIGGERS:
        reds = redcal.filter_reds(reds, ex_ants=[ant for ant in ants if ant[0] >= 320])
    redcal_class = classify_off_grid(reds, ants)
All antennas are flagged, so this cell is being skipped.
In [35]:
if OC_USE_PRIOR_SOL and not all_flagged():
    # Find closest omnical file
    omnical_files = sorted(glob.glob('.'.join(OMNICAL_FILE.split('.')[:-5]) + '.*.' + '.'.join(OMNICAL_FILE.split('.')[-3:])))
    if len(omnical_files) == 0:
        OC_USE_PRIOR_SOL = False
    else:
        omnical_jds = np.array([float(re.findall("\d+\.\d+", ocf)[-1]) for ocf in omnical_files])
        closest_omnical = omnical_files[np.argmin(np.abs(omnical_jds - data.times[0]))]

        # Load closest omnical file and use it if the antenna flagging is not too dissimilar
        hc = io.HERACal(closest_omnical)
        prior_gains, prior_flags, _, _ = hc.read()
        not_bad_not_prior_flagged = [ant for ant in overall_class if not ant in redcal_class.bad_ants and not np.all(prior_flags[ant])]
        if (len(redcal_class.bad_ants) == len(redcal_class.ants)):
            OC_USE_PRIOR_SOL = False  # all antennas flagged
        elif (len(not_bad_not_prior_flagged) / (len(redcal_class.ants) - len(redcal_class.bad_ants))) < OC_PRIOR_SOL_FLAG_THRESH:
            OC_USE_PRIOR_SOL = False  # too many antennas unflaged that were flagged in the prior sol
        else:
            print(f'Using {closest_omnical} as a starting point for redcal.')
All antennas are flagged, so this cell is being skipped.
In [36]:
if not all_flagged():
    redcal_start = time.time()
    rc_settings = {'oc_conv_crit': 1e-10, 'gain': 0.4, 'run_logcal': False,
                   'oc_maxiter': OC_MAXITER, 'check_after': OC_MAXITER, 'use_gpu': OC_USE_GPU}
    
    if check_if_whole_pol_flagged(redcal_class):
        # skip redcal, initialize empty sol and meta 
        sol = redcal.RedSol(reds)
        meta = {'chisq': None, 'chisq_per_ant': None}
    else:    
        if OC_USE_PRIOR_SOL:
            # use prior unflagged gains and data to create starting point for next step
            sol = redcal.RedSol(reds=reds, gains={ant: prior_gains[ant] for ant in not_bad_not_prior_flagged})
            reds_to_update = [[bl for bl in red if (utils.split_bl(bl)[0] in sol.gains) and (utils.split_bl(bl)[1] in sol.gains)] for red in reds]
            reds_to_update = [red for red in reds_to_update if len(red) > 0]
            sol.update_vis_from_data(data, reds_to_update=reds_to_update)
            redcal.expand_omni_gains(sol, reds, data)
            sol.update_vis_from_data(data)
        else:
            # perform first stage of redundant calibration 
            meta, sol = redcal.redundantly_calibrate(data, reds, max_dims=None, **rc_settings)
            max_dly = np.max(np.abs(list(meta['fc_meta']['dlys'].values())))  # Needed for RFI delay-slope cal
            median_cspa = recheck_chisq(meta['chisq_per_ant'], sol, oc_cspa_suspect[1] * 5, np.nanmedian)
             # remove particularly bad antennas (5x the bound on median, not mean)
            cspa_class = ant_class.antenna_bounds_checker(median_cspa, good=(oc_cspa_good[0], oc_cspa_suspect[1] * 5), bad=[(-np.inf, np.inf)])
            redcal_class += cspa_class
            print(f'Removing {cspa_class.bad_ants} for >5x high median chi^2.')
            for ant in cspa_class.bad_ants:
                print(f'\t{ant}: {median_cspa[ant]:.3f}')
            
        malloc_trim()
All antennas are flagged, so this cell is being skipped.
In [37]:
if not all_flagged():
    # iteratively rerun redundant calibration
    redcal_done = False
    rc_settings['oc_maxiter'] = rc_settings['check_after'] = OC_RERUN_MAXITER
    for i in range(OC_MAX_RERUN + 1):
        # refilter reds and update classification to reflect new off-grid ants, if any
        reds = per_pol_filter_reds(reds, ex_ants=(overall_class + redcal_class).bad_ants, antpos=hd.data_antpos, **fr_settings)
        reds = sorted(reds, key=len, reverse=True)
        redcal_class += classify_off_grid(reds, ants)
        
        # check to see whether we're done
        if check_if_whole_pol_flagged(redcal_class) or redcal_done or (i == OC_MAX_RERUN):
            break
    
        # re-run redundant calibration using previous solution, updating bad and suspicious antennas
        meta, sol = redcal.redundantly_calibrate(data, reds, sol0=sol, max_dims=None, **rc_settings)
        malloc_trim()
        
        # recompute chi^2 for bad antennas without bad antennas to make sure they are actually bad
        mean_cspa = recheck_chisq(meta['chisq_per_ant'], sol, oc_cspa_suspect[1], np.nanmean)
        
        # remove bad antennas
        cspa_class = ant_class.antenna_bounds_checker(mean_cspa, good=oc_cspa_good, suspect=oc_cspa_suspect, bad=[(-np.inf, np.inf)])
        for ant in cspa_class.bad_ants:
            if mean_cspa[ant] < np.max(list(mean_cspa.values())) / OC_MAX_CHISQ_FLAGGING_DYNAMIC_RANGE:
                cspa_class[ant] = 'suspect'  # reclassify as suspect if they are much better than the worst antennas
        redcal_class += cspa_class
        print(f'Removing {cspa_class.bad_ants} for high mean unflagged chi^2.')
        for ant in cspa_class.bad_ants:
            print(f'\t{ant}: {mean_cspa[ant]:.3f}')
    
        if len(cspa_class.bad_ants) == 0:
            redcal_done = True  # no new antennas to flag
    
    print(f'Finished redcal in {(time.time() - redcal_start) / 60:.2f} minutes.')
    overall_class += redcal_class
All antennas are flagged, so this cell is being skipped.

Expand solution to include calibratable baselines excluded from redcal (e.g. because they were too long)¶

In [38]:
if not all_flagged():
    expanded_reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol', bl_error_tol=2.0)
    expanded_reds = per_pol_filter_reds(expanded_reds, ex_ants=(ant_metrics_class + solar_class + zeros_class + auto_class + xengine_diff_class).bad_ants,
                                        max_dims=OC_MAX_DIMS, min_dim_size=OC_MIN_DIM_SIZE)
    if OC_SKIP_OUTRIGGERS:
        expanded_reds = redcal.filter_reds(expanded_reds, ex_ants=[ant for ant in ants if ant[0] >= 320])
    if len(sol.gains) > 0:
        redcal.expand_omni_vis(sol, expanded_reds, data, chisq=meta['chisq'], chisq_per_ant=meta['chisq_per_ant'])
All antennas are flagged, so this cell is being skipped.
In [39]:
if not all_flagged():
    # now figure out flags, nsamples etc.
    omni_flags = {ant: (~np.isfinite(g)) | (ant in overall_class.bad_ants) for ant, g in sol.gains.items()}
    vissol_flags = datacontainer.RedDataContainer({bl: ~np.isfinite(v) for bl, v in sol.vis.items()}, reds=sol.vis.reds)
    single_nsamples_array = np.ones((len(hd.times), len(hd.freqs)), dtype=float)
    nsamples = datacontainer.DataContainer({bl: single_nsamples_array for bl in data})
    vissol_nsamples = redcal.count_redundant_nsamples(nsamples, [red for red in expanded_reds if red[0] in vissol_flags], 
                                                      good_ants=[ant for ant in overall_class if ant not in overall_class.bad_ants])
    for bl in vissol_flags:
        vissol_flags[bl][vissol_nsamples[bl] == 0] = True
    sol.make_sol_finite()
All antennas are flagged, so this cell is being skipped.

Fix the firstcal delay slope degeneracy using RFI transmitters¶

In [40]:
if not OC_USE_PRIOR_SOL and not all_flagged():
    # find channels clearly contaminated by RFI
    not_bad_ants = [ant for ant in overall_class.ants if (overall_class[ant] != 'bad') and (utils.join_bl(ant, ant) in data)]
    if len(not_bad_ants) > 0:
        chan_flags = np.mean([xrfi.detrend_medfilt(data[utils.join_bl(ant, ant)], Kf=8, Kt=2) for ant in not_bad_ants], axis=(0, 1)) > 5

        # hardcoded RFI transmitters and their headings
        # channel: frequency (Hz), heading (rad), chi^2
        phs_sol = {359: ( 90744018.5546875, 0.7853981, 23.3),
                   360: ( 90866088.8671875, 0.7853981, 10.8),
                   385: ( 93917846.6796875, 0.7853981, 27.3),
                   386: ( 94039916.9921875, 0.7853981, 18.1),
                   400: ( 95748901.3671875, 6.0632738, 24.0),
                   441: (100753784.1796875, 0.7853981, 21.7),
                   442: (100875854.4921875, 0.7853981, 19.4),
                   455: (102462768.5546875, 6.0632738, 18.8),
                   456: (102584838.8671875, 6.0632738,  8.8),
                   471: (104415893.5546875, 0.7853981, 13.3),
                   484: (106002807.6171875, 6.0632738, 21.2),
                   485: (106124877.9296875, 6.0632738,  4.0),
                  1181: (191085815.4296875, 0.7853981, 26.3),
                  1182: (191207885.7421875, 0.7853981, 27.0),
                  1183: (191329956.0546875, 0.7853981, 25.6),
                  1448: (223678588.8671875, 2.6075219, 25.7),
                  1449: (223800659.1796875, 2.6075219, 22.6),
                  1450: (223922729.4921875, 2.6075219, 11.6),
                  1451: (224044799.8046875, 2.6075219,  5.9),
                  1452: (224166870.1171875, 2.6075219, 22.6),
                  1510: (231246948.2421875, 0.1068141, 23.9)}

        if not np.isclose(hd.freqs[0], 46920776.3671875, atol=0.001) or len(hd.freqs) != 1536:
            # We have less frequencies than usual (maybe testing)
            phs_sol = {np.argmin(np.abs(hd.freqs - freq)): (freq, heading, chisq) for chan, (freq, heading, chisq) in phs_sol.items() if hd.freqs[0] <= freq <= hd.freqs[-1]}


        rfi_chans = [chan for chan in phs_sol if chan_flags[chan]]
        if len(rfi_chans) >= 2:
            print('Channels used for delay-slope calibration with RFI:', rfi_chans)
            rfi_angles = np.array([phs_sol[chan][1] for chan in rfi_chans])
            rfi_headings = np.array([np.cos(rfi_angles), np.sin(rfi_angles), np.zeros_like(rfi_angles)])
            rfi_chisqs = np.array([phs_sol[chan][2] for chan in rfi_chans])

            # resolve firstcal degeneracy with delay slopes set by RFI transmitters, update cal
            RFI_dly_slope_gains = abscal.RFI_delay_slope_cal([red for red in expanded_reds if red[0] in sol.vis], hd.antpos, sol.vis, hd.freqs, rfi_chans, rfi_headings, rfi_wgts=rfi_chisqs**-1,
                                                             min_tau=-max_dly, max_tau=max_dly, delta_tau=0.1e-9, return_gains=True, gain_ants=sol.gains.keys())
            sol.gains = {ant: g * RFI_dly_slope_gains[ant] for ant, g in sol.gains.items()}
            apply_cal.calibrate_in_place(sol.vis, RFI_dly_slope_gains)
            malloc_trim()
        else:
            print(f"Only {len(rfi_chans)} RFI channels with known headings were flagged for RFI, so RFI-firstcal is being skipped.")

Perform absolute amplitude calibration using a model of autocorrelations¶

In [41]:
# Load simulated and then downsampled model of autocorrelations that includes receiver noise, then interpolate to upsample
if VALIDATION:
    hd_auto_model = io.HERAData('/lustre/aoc/projects/hera/Validation/H6C_IDR2/sim_data/h6c_validation_autos_for_amp_abscal_with_Trx_100K.uvh5')
else:
    hd_auto_model = io.HERAData(f'{HNBT_DATA}/SSM_autocorrelations_downsampled_sum_pol_convention.uvh5')
if not all_flagged():
    model, _, _ = hd_auto_model.read()
    per_pol_interpolated_model = {}
    for bl in model:
        sorted_lsts, lst_indices = np.unique(model.lsts, return_index=True)
        periodic_model = np.vstack([model[bl][lst_indices, :], model[bl][lst_indices[0], :]])
        periodic_lsts = np.append(sorted_lsts, sorted_lsts[0] + 2 * np.pi)
        lst_interpolated = interpolate.CubicSpline(periodic_lsts, periodic_model, axis=0, bc_type='periodic')(data.lsts)
        per_pol_interpolated_model[bl[2]] = interpolate.CubicSpline(model.freqs, lst_interpolated, axis=1)(data.freqs)
    model = {bl: per_pol_interpolated_model[bl[2]] for bl in auto_bls if utils.split_bl(bl)[0] not in overall_class.bad_ants}
All antennas are flagged, so this cell is being skipped.
In [42]:
if not all_flagged():
    # Run abscal and update omnical gains with abscal gains
    if len(model) > 0:
        redcaled_autos = {bl: sol.calibrate_bl(bl, data[bl]) for bl in auto_bls if utils.split_bl(bl)[0] not in overall_class.bad_ants}
        g_abscal = abscal.abs_amp_logcal(model, redcaled_autos, verbose=False, return_gains=True, gain_ants=sol.gains)
        sol.gains = {ant: g * g_abscal[ant] for ant, g in sol.gains.items()}
        apply_cal.calibrate_in_place(sol.vis, g_abscal)
        del redcaled_autos, g_abscal
All antennas are flagged, so this cell is being skipped.

Full absolute calibration of phase gradients¶

If an ABSCAL_MODEL_FILES_GLOB is provided, try to perform a full absolute calibration of tip-tilt phase gradients across the array using that those model files. Specifically, this step calibrates omnical visbility solutions using unique baselines simulated with a model of the sky and HERA's beam.

In [43]:
if not all_flagged():
    if ABSCAL_MODEL_FILES_GLOB is not None:
        abscal_model_files = sorted(glob.glob(ABSCAL_MODEL_FILES_GLOB))
    elif VALIDATION:
        abscal_model_files = sorted(glob.glob('/lustre/aoc/projects/hera/Validation/H6C_IDR2/sim_data/foregrounds/zen.LST.*.foregrounds.uvh5'))
    else:
        # try to find files on site
        abscal_model_files = sorted(glob.glob('/mnt/sn1/data1/abscal_models/H6C/zen.2458894.?????.uvh5'))
        if len(abscal_model_files) == 0:
            # try to find files at NRAO
            abscal_model_files = sorted(glob.glob('/lustre/aoc/projects/hera/h6c-analysis/abscal_models/h6c_abscal_files_unique_baselines/zen.2458894.?????.uvh5'))
    print(f'Found {len(abscal_model_files)} abscal model files{" in " + os.path.dirname(abscal_model_files[0]) if len(abscal_model_files) > 0 else ""}.')
All antennas are flagged, so this cell is being skipped.
In [44]:
if not all_flagged():
    # Try to perform a full abscal of phase
    if len(abscal_model_files) == 0:
        DO_FULL_ABSCAL = False
        print('No model files found... not performing full absolute calibration of phase gradients.')
    elif np.all([ant in overall_class.bad_ants for ant in ants]):
        DO_FULL_ABSCAL = False
        print('All antennas classified as bad... skipping absolute calibration of phase gradients.')
    else:
        abscal_start = time.time()
        # figure out which model files match the LSTs of the data
        matched_model_files = sorted(set(abscal.match_times(SUM_FILE, abscal_model_files, filetype='uvh5')))
        if len(matched_model_files) == 0:
            DO_FULL_ABSCAL = False
            print(f'No model files found matching the LSTs of this file after searching for {(time.time() - abscal_start) / 60:.2f} minutes. '
                  'Not performing full absolute calibration of phase gradients.')
        else:
            DO_FULL_ABSCAL = True
            # figure out appropriate model times to load
            hdm = io.HERAData(matched_model_files)
            all_model_times, all_model_lsts = abscal.get_all_times_and_lsts(hdm, unwrap=True)
            d2m_time_map = abscal.get_d2m_time_map(data.times, np.unwrap(data.lsts), all_model_times, all_model_lsts, extrap_limit=.5)
All antennas are flagged, so this cell is being skipped.
In [45]:
if not all_flagged():
    if DO_FULL_ABSCAL:
        abscal_meta = {}
        for pol in ['ee', 'nn']:
            print(f'Performing absolute phase gradient calibration of {pol}-polarized visibility solutions...')
            
            # load matching times and baselines
            unflagged_data_bls = [bl for bl in vissol_flags if not np.all(vissol_flags[bl]) and bl[2] == pol]
            model_bls = copy.deepcopy(hdm.bls)
            model_antpos = hdm.data_antpos
            if len(matched_model_files) > 1:  # in this case, it's a dictionary
                model_bls = list(set([bl for bls in list(hdm.bls.values()) for bl in bls]))
                model_antpos = {ant: pos for antpos in hdm.data_antpos.values() for ant, pos in antpos.items()}
            data_bls, model_bls, data_to_model_bl_map = abscal.match_baselines(unflagged_data_bls, model_bls, data.antpos, model_antpos=model_antpos, 
                                                                             pols=[pol], data_is_redsol=True, model_is_redundant=True, tol=1.0,
                                                                             min_bl_cut=ABSCAL_MIN_BL_LEN, max_bl_cut=ABSCAL_MAX_BL_LEN, verbose=True)
            model, model_flags, _ = io.partial_time_io(hdm, np.unique([d2m_time_map[time] for time in data.times]), bls=model_bls)
            model_bls = [data_to_model_bl_map[bl] for bl in data_bls]
            
            # rephase model to match in lsts
            model_blvecs = {bl: model.antpos[bl[0]] - model.antpos[bl[1]] for bl in model.keys()}
            utils.lst_rephase(model, model_blvecs, model.freqs, data.lsts - model.lsts,
                              lat=hdm.telescope.location.lat.deg, inplace=True)
    
            # run abscal and apply 
            abscal_meta[pol], delta_gains = abscal.complex_phase_abscal(sol.vis, model, sol.reds, data_bls, model_bls)
            
            # apply gains
            sol.gains = {antpol : g * delta_gains.get(antpol, 1) for antpol, g in sol.gains.items()}
            apply_cal.calibrate_in_place(sol.vis, delta_gains)            
         
        del model, model_flags, delta_gains
        malloc_trim()    
        
        print(f'Finished absolute calibration of tip-tilt phase slopes in {(time.time() - abscal_start) / 60:.2f} minutes.')
All antennas are flagged, so this cell is being skipped.
In [46]:
if not all_flagged() and DO_FULL_ABSCAL and CALIBRATE_CROSS_POLS:
    cross_pol_cal_start = time.time()

    # Compute reds for good antennas 
    cross_reds = redcal.get_reds(hd.data_antpos, pols=['en', 'ne'], bl_error_tol=2.0)        
    cross_reds = redcal.filter_reds(cross_reds, ex_ants=overall_class.bad_ants, pols=['en', 'ne'], antpos=hd.antpos, **fr_settings)    
    unflagged_data_bls = [red[0] for red in cross_reds]

    # Get cross-polarized model visibilities
    model_bls = copy.deepcopy(hdm.bls)
    model_antpos = hdm.data_antpos
    if len(matched_model_files) > 1:  # in this case, it's a dictionary
        model_bls = list(set([bl for bls in list(hdm.bls.values()) for bl in bls]))
        model_antpos = {ant: pos for antpos in hdm.data_antpos.values() for ant, pos in antpos.items()}

    data_bls, model_bls, data_to_model_bl_map = abscal.match_baselines(unflagged_data_bls, model_bls, data.antpos, model_antpos=model_antpos, 
                                                                     pols=['en', 'ne'], data_is_redsol=False, model_is_redundant=True, tol=1.0,
                                                                     min_bl_cut=ABSCAL_MIN_BL_LEN, max_bl_cut=ABSCAL_MAX_BL_LEN, verbose=True)
    
    model, model_flags, _ = io.partial_time_io(hdm, np.unique([d2m_time_map[time] for time in data.times]), 
                                               bls=list(set([bl[0:2] for bl in model_bls])), polarizations=['en', 'ne'])
    model_bls = [data_to_model_bl_map[bl] for bl in data_bls]

    # rephase model to match in lsts
    model_blvecs = {bl: model.antpos[bl[0]] - model.antpos[bl[1]] for bl in model.keys()}
    utils.lst_rephase(model, model_blvecs, model.freqs, data.lsts - model.lsts, lat=hdm.telescope.location.lat.deg, inplace=True)


    wgts_here = {}
    data_here = {}

    
    for red in cross_reds:
        data_bl = red[0]
        if data_bl in data_to_model_bl_map:

            wgts_here[data_bl] = np.sum([
                np.logical_not(omni_flags[utils.split_bl(bl)[0]] | omni_flags[utils.split_bl(bl)[1]])
                for bl in red
            ], axis=0)
            data_here[data_bl] = np.nanmean([
                np.where(
                    omni_flags[utils.split_bl(bl)[0]] | omni_flags[utils.split_bl(bl)[1]],
                    np.nan, sol.calibrate_bl(bl, data[bl])
                ) 
                for bl in red
            ], axis=0)
    
    # Run cross-polarized phase calibration
    delta = abscal.cross_pol_phase_cal(
        model=model, data=data_here, wgts=wgts_here, data_bls=data_bls, model_bls=model_bls, return_gains=False, 
        refpol='Jee', gain_ants=sol.gains.keys()
    )
    delta_gains = {antpol: (np.ones_like(delta) if antpol[1] == 'Jee' else np.exp(1j * delta)) for antpol in sol.gains.keys()}
    
    # apply gains
    # \Delta = \phi_e - \phi_n, where V_{en}^{cal} = V_{en}^{uncal} * e^{i \Delta} 
    # and V_{ne}^{cal} = V_{ne}^{uncal} * e^{-i \Delta}
    sol.gains = {antpol: g * delta_gains[antpol] for antpol, g in sol.gains.items()}
    apply_cal.calibrate_in_place(sol.vis, delta_gains)
    del hdm, model, model_flags, delta_gains
    print(f'Finished relative polarized phase calibration in {(time.time() - cross_pol_cal_start) / 60:.2f} minutes.')
All antennas are flagged, so this cell is being skipped.

Plotting¶

In [47]:
def redundant_group_plot():
    if np.all([ant in overall_class.bad_ants for ant in ants]):
        print('All antennas classified as bad. Nothing to plot.')
        return
    
    fig, axes = plt.subplots(2, 2, figsize=(14, 6), dpi=100, sharex='col', sharey='row', gridspec_kw={'hspace': 0, 'wspace': 0})
    for i, pol in enumerate(['ee', 'nn']):
        reds_here = redcal.get_reds(hd.data_antpos, pols=[pol], pol_mode='1pol', bl_error_tol=2.0)
        red = sorted(redcal.filter_reds(reds_here, ex_ants=overall_class.bad_ants), key=len, reverse=True)[0]
        rc_data = {bl: sol.calibrate_bl(bl, data[bl]) for bl in red}
        for bl in red:
            axes[0, i].plot(hd.freqs/1e6, np.angle(rc_data[bl][0]), alpha=.5, lw=.5)
            axes[1, i].semilogy(hd.freqs/1e6, np.abs(rc_data[bl][0]), alpha=.5, lw=.5)
        axes[0, i].plot(hd.freqs / 1e6, np.angle(sol.vis[red[0]][0]), lw=1, c='k')
        axes[1, i].semilogy(hd.freqs / 1e6, np.abs(sol.vis[red[0]][0]), lw=1, c='k', label=f'Baseline Group:\n{(int(red[0][0]), int(red[0][1]), red[0][2])}')
        axes[1, i].set_xlabel('Frequency (MHz)')
        axes[1, i].legend(loc='upper right')
    axes[0, 0].set_ylabel('Visibility Phase (radians)')
    axes[1, 0].set_ylabel('Visibility Amplitude (Jy)')
    plt.tight_layout()
In [48]:
def abscal_degen_plot():
    if DO_FULL_ABSCAL:
        fig, axes = plt.subplots(3, 1, figsize=(14, 6), dpi=100, sharex=True, gridspec_kw={'hspace': .05})

        for ax, pol in zip(axes[:2], ['ee', 'nn']):
            for kk in range(abscal_meta[pol]['Lambda_sol'].shape[-1]):
                ax.plot(hd.freqs[~rfi_flags[0]] * 1e-6, abscal_meta[pol]['Lambda_sol'][0, ~rfi_flags[0], kk], '.', ms=1, label=f"Component {kk}")

            ax.set_ylim(-np.pi-0.5, np.pi+0.5)
            ax.set_xlabel('Frequency (MHz)')
            ax.set_ylabel('Phase Gradient\nVector Component')
            ax.legend(markerscale=20, title=f'{pol}-polarization', loc='lower right')
            ax.grid()
            
        for pol, color in zip(['ee', 'nn'], ['b', 'r']):
            axes[2].plot(hd.freqs[~rfi_flags[0]]*1e-6, abscal_meta[pol]['Z_sol'].real[0, ~rfi_flags[0]], '.', ms=1, label=pol, color=color)
        axes[2].set_ylim(-.25, 1.05)
        axes[2].set_ylabel('Re[Z($\\nu$)]')
        axes[2].legend(markerscale=20, loc='lower right')
        axes[2].grid()            
        plt.tight_layout()
In [49]:
def polarized_gain_phase_plot():
    if CALIBRATE_CROSS_POLS and DO_FULL_ABSCAL:
        plt.figure(figsize=(14, 4), dpi=100)
        for i, time in enumerate(data.times):
            plt.plot(data.freqs / 1e6, np.where(rfi_flags[i], np.nan, delta[i, :]), '.', ms=1.5, label=f'{time:.6f}')
        plt.ylim(-np.pi-0.5, np.pi+0.5)
        plt.xlabel('Frequency (MHz)')
        plt.ylabel('Relative Phase $\Delta \ (\phi_{ee} - \phi_{nn})$')
        plt.grid()
        plt.legend()

Figure 4: Redundant calibration of a single baseline group¶

The results of a redundant-baseline calibration of a single integration and a single group, the one with the highest redundancy in each polarization after antenna classification and excision based on the above, plus the removal of antennas with high chi^2 per antenna. The black line is the redundant visibility solution. Each thin colored line is a different baseline group. Phases are shown in the top row, amplitudes in the bottom, ee-polarized visibilities in the left column, and nn-polarized visibilities in the right.

In [50]:
if PLOT and not all_flagged(): redundant_group_plot()
All antennas are flagged, so this cell is being skipped.

Figure 5: Absolute calibration of redcal degeneracies¶

This figure shows the per-frequency phase gradient solutions across the array for both polarizations and all components of the degenerate subspace of redundant-baseline calibraton. While full HERA only has two such tip-tilt degeneracies, a subset of HERA can have up to OC_MAX_DIMS (depending on antenna flagging). In addition to the absolute amplitude, this is the full set of the calibration degrees of freedom not constrainted by redcal. This figure also includes a plot of $Re[Z(\nu)]$, the complex objective function which varies from -1 to 1 and indicates how well the data and the absolute calibration model have been made to agree. Perfect agreement is 1.0 and good agreement is anything above $\sim$0.5 Decorrelation yields values closer to 0, where anything below $\sim$0.3 is suspect.

In [51]:
if PLOT and not all_flagged(): abscal_degen_plot()
All antennas are flagged, so this cell is being skipped.

Figure 6: Relative Phase Calibration¶

This figure shows the relative phase calibration between the ee vs. nn polarizations.

In [52]:
if PLOT and not all_flagged(): polarized_gain_phase_plot()
All antennas are flagged, so this cell is being skipped.

Attempt to calibrate some flagged antennas¶

This attempts to calibrate bad antennas using information from good or suspect antennas without allowing bad antennas to affect their calibration. However, introducing 0s in gains or infs/nans in gains or visibilities can create problems down the line, so those are removed.

In [53]:
if not all_flagged():
    expand_start = time.time()
    expanded_reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn'], pol_mode='2pol', bl_error_tol=2.0)
    sol.vis.build_red_keys(expanded_reds)
    redcal.expand_omni_gains(sol, expanded_reds, data, chisq_per_ant=meta['chisq_per_ant'])
    if not np.all([ant in overall_class.bad_ants for ant in ants]):
        redcal.expand_omni_vis(sol, expanded_reds, data)
    
    # Replace near-zeros in gains and infs/nans in gains/sols
    for ant in sol.gains:
        zeros_in_gains = np.isclose(sol.gains[ant], 0)
        if ant in omni_flags:
            omni_flags[ant][zeros_in_gains] = True
        sol.gains[ant][zeros_in_gains] = 1.0 + 0.0j
    sol.make_sol_finite()
    malloc_trim()
    print(f'Finished expanding gain solution in {(time.time() - expand_start) / 60:.2f} minutes.')
All antennas are flagged, so this cell is being skipped.
In [54]:
def array_chisq_plot(include_outriggers=True):
    if np.all([ant in overall_class.bad_ants for ant in ants]):
        print('All antennas classified as bad. Nothing to plot.')
        return    
    
    def _chisq_subplot(ants, size=250):
        fig, axes = plt.subplots(1, 2, figsize=(14, 5), dpi=100)
        for ax, pol in zip(axes, ['ee', 'nn']):
            ants_to_plot = set([ant for ant in meta['chisq_per_ant'] if utils.join_pol(ant[1], ant[1]) == pol and (ant[0] in ants)])
            cspas = np.array([np.nanmean(np.where(rfi_flags, np.nan, meta['chisq_per_ant'][ant])) for ant in ants_to_plot])
            xpos = [hd.antpos[ant[0]][0] for ant in ants_to_plot]
            ypos = [hd.antpos[ant[0]][1] for ant in ants_to_plot]
            scatter = ax.scatter(xpos, ypos, s=size, c=cspas, lw=.25, edgecolors=np.where(np.isfinite(cspas) & (cspas > 0), 'none', 'k'), 
                                 norm=matplotlib.colors.LogNorm(vmin=1, vmax=oc_cspa_suspect[1]))
            for ant in ants_to_plot:
                ax.text(hd.antpos[ant[0]][0], hd.antpos[ant[0]][1], ant[0], va='center', ha='center', fontsize=8,
                        c=('r' if ant in overall_class.bad_ants else 'w'))
            plt.colorbar(scatter, ax=ax, extend='both')
            ax.axis('equal')
            ax.set_xlabel('East-West Position (meters)')
            ax.set_ylabel('North-South Position (meters)')
            ax.set_title(f'{pol}-pol $\\chi^2$ / Antenna (Red is Flagged)')
        plt.tight_layout()    
    
    _chisq_subplot([ant for ant in hd.data_ants if ant < 320])
    outriggers = [ant for ant in hd.data_ants if ant >= 320]    
    if include_outriggers & (len(outriggers) > 0):
        _chisq_subplot([ant for ant in hd.data_ants if ant >= 320], size=400)

Figure 7: chi^2 per antenna across the array¶

This plot shows median (taken over time and frequency) of the normalized chi^2 per antenna. The expectation value for this quantity when the array is perfectly redundant is 1.0. Antennas that are classified as bad for any reason have their numbers shown in red. Some of those antennas were classified as bad during redundant calibration for high chi^2. Some of those antennas were originally excluded from redundant calibration because they were classified as bad earlier for some reason. See here for more details. Note that the color scale saturates at below 1 and above 10.

In [55]:
if PLOT and not all_flagged(): array_chisq_plot(include_outriggers=(not OC_SKIP_OUTRIGGERS))
All antennas are flagged, so this cell is being skipped.

Figure 8: Summary of antenna classifications after redundant calibration¶

This figure is the same as Figure 2, except that it now includes additional suspect or bad antennas based on redundant calibration. This can include antennas with high chi^2, but it can also include antennas classified as "bad" because they would add extra degeneracies to calibration.

In [56]:
if PLOT and not all_flagged(): array_class_plot(overall_class, extra_label=", Post-Redcal")
All antennas are flagged, so this cell is being skipped.
In [57]:
to_show = {'Antenna': [f'{ant[0]}{ant[1][-1]}' for ant in ants]}
classes = {'Antenna': [overall_class[ant] if ant in overall_class else '-' for ant in ants]}
to_show['Dead?'] = [{'good': 'No', 'bad': 'Yes'}[am_totally_dead[ant]] if (ant in am_totally_dead) else '' for ant in ants]
classes['Dead?'] = [am_totally_dead[ant] if (ant in am_totally_dead) else '' for ant in ants]
for title, ac in [('Low Correlation', am_corr),
                  ('Cross-Polarized', am_xpol),
                  ('Solar Alt', solar_class),
                  ('Even/Odd Zeros', zeros_class),
                  ('Autocorr Power', auto_power_class),
                  ('Autocorr Slope', auto_slope_class),
                  ('Auto RFI RMS', auto_rfi_class),
                  ('Autocorr Shape', auto_shape_class),
                  ('Bad Diff X-Engines', xengine_diff_class)]:
    to_show[title] = [f'{ac._data[ant]:.2G}' if (ac is not None and ant in ac._data) else '' for ant in ants]
    classes[title] = [ac[ant] if (ac is not None and ant in ac) else 'bad' for ant in ants]
    
to_show['Redcal chi^2'] = [f'{np.nanmean(np.where(rfi_flags, np.nan, meta["chisq_per_ant"][ant])):.3G}' \
                           if (meta is not None and meta['chisq_per_ant'] is not None and ant in meta['chisq_per_ant']) else '' for ant in ants]
classes['Redcal chi^2'] = [redcal_class[ant] if redcal_class is not None and ant in redcal_class else 'bad' for ant in ants]

df = pd.DataFrame(to_show)
df_classes = pd.DataFrame(classes)
colors = {'good': 'darkgreen', 'suspect': 'goldenrod', 'bad': 'maroon'}
df_colors = df_classes.applymap(lambda x: f'background-color: {colors.get(x, None)}')

table = df.style.hide() \
                .apply(lambda x: pd.DataFrame(df_colors.values, columns=x.columns), axis=None) \
                .set_properties(subset=['Antenna'], **{'font-weight': 'bold', 'border-right': "3pt solid black"}) \
                .set_properties(subset=df.columns[1:], **{'border-left': "1pt solid black"}) \
                .set_properties(**{'text-align': 'center', 'color': 'white'})

Table 1: Complete summary of per-antenna classifications¶

This table summarizes the results of the various classifications schemes detailed above. As before, green is good, yellow is suspect, and red is bad. The color for each antenna (first column) is the final summary of all other classifications. Antennas missing from redcal $\chi^2$ were excluded redundant-baseline calibration, either because they were flagged by ant_metrics or the even/odd zeros check, or because they would add unwanted extra degeneracies.

In [58]:
HTML(table.to_html())
Out[58]:
Antenna Dead? Low Correlation Cross-Polarized Solar Alt Even/Odd Zeros Autocorr Power Autocorr Slope Auto RFI RMS Autocorr Shape Bad Diff X-Engines Redcal chi^2
3e No 0.41 0.22 -42 0 13 -0.76 INF INF
3n No 0.41 0.22 -42 0 14 -0.72 INF INF
4e No 0.41 0.21 -42 0 20 -0.81 INF INF
4n No 0.41 0.21 -42 0 11 -0.58 INF INF 18
5e No 0.41 0.2 -42 0 12 -0.8 INF INF
5n No 0.41 0.2 -42 0 16 -0.87 INF INF
7e No 0.41 0.21 -42 0 16 -0.76 INF INF
7n No 0.41 0.21 -42 0 19 -0.77 INF INF
8e No 0.4 0.23 -42 0 45 -0.87 INF INF
8n No 0.41 0.23 -42 0 5.8 -0.36 INF INF 18
9e No 0.41 0.22 -42 0 13 -0.79 INF INF
9n No 0.4 0.22 -42 0 14 -0.7 INF INF
10e No 0.4 0.22 -42 0 18 -0.75 INF INF
10n No 0.4 0.22 -42 0 14 -0.63 INF INF
15e No 0.41 0.21 -42 0 20 -0.92 INF INF
15n No 0.41 0.21 -42 0 21 -0.95 INF INF
16e No 0.41 0.21 -42 0 13 -0.67 INF INF
16n No 0.42 0.21 -42 0 12 -0.56 INF INF 18
17e No 0.41 0.2 -42 0 13 -0.85 INF INF
17n No 0.41 0.2 -42 0 13 -0.84 INF INF
18e No 0.4 0.27 -42 0 7.2 -0.91 INF INF
18n No 0.37 0.27 -42 0 8.5 -0.49 INF INF 18
19e No 0.41 0.21 -42 0 16 -0.77 INF INF
19n No 0.41 0.21 -42 0 15 -0.69 INF INF
20e No 0.41 0.21 -42 0 14 -0.7 INF INF
20n No 0.41 0.21 -42 0 19 -0.69 INF INF
21e No 0.4 0.21 -42 0 6.2 -0.67 INF INF
21n No 0.4 0.21 -42 0 8.4 -0.51 INF INF 18
22e Yes -42 1.5E+03 0 0 INF INF
22n Yes -42 1.5E+03 0 0 INF INF
27e No 0.13 -0.084 -42 0 6.6 -0.46 INF INF
27n No 0.065 -0.084 -42 0 4.7 -0.029 INF INF
28e No 0.023 -0.0012 -42 1 0.5 -0.42 INF INF
28n No 0.024 -0.0012 -42 0 0.46 -0.33 INF INF
29e No 0.4 0.12 -42 0 14 0.098 INF INF 18
29n No 0.4 0.12 -42 0 10 0.61 INF INF
30e No 0.41 0.22 -42 0 12 -0.75 INF INF
30n No 0.4 0.22 -42 0 1.8 -0.64 INF INF
31e No 0.41 0.2 -42 0 15 -0.73 INF INF
31n No 0.41 0.2 -42 0 12 -0.6 INF INF
32e No 0.41 0.21 -42 0 9.9 -0.85 INF INF
32n No 0.4 0.21 -42 0 11 0.31 INF INF 18
33e No 0.4 0.26 -42 0 14 -0.65 INF INF
33n No 0.38 0.26 -42 0 16 -0.61 INF INF
34e Yes -42 1.5E+03 0 0 INF INF
34n Yes -42 1.5E+03 0 0 INF INF
35e Yes -42 1.5E+03 0 0 INF INF
35n Yes -42 1.5E+03 0 0 INF INF
36e No 0.022 0.0015 -42 0 24 -0.098 INF INF
36n No 0.021 0.0015 -42 0 21 -0.18 INF INF
37e No 0.024 0.0004 -42 0 11 0.046 INF INF
37n No 0.025 0.0004 -42 0 22 0.063 INF INF
38e No 0.021 0.00052 -42 0 20 0.17 INF INF
38n No 0.022 0.00052 -42 0 24 0.042 INF INF
40e No 0.41 0.21 -42 0 7.2 -0.7 INF INF
40n No 0.41 0.21 -42 1 2.4 -0.66 INF INF
41e No 0.42 0.2 -42 0 16 -0.79 INF INF
41n No 0.41 0.2 -42 0 14 -0.7 INF INF
42e No 0.41 0.21 -42 0 16 -0.72 INF INF
42n No 0.4 0.21 -42 0 1.3 -0.54 INF INF 18
43e No 0.41 0.2 -42 0 13 -0.72 INF INF
43n No 0.42 0.2 -42 0 13 -0.56 INF INF 18
44e No 0.029 0.0023 -42 0 0.49 -0.41 INF INF
44n No 0.024 0.0023 -42 1 0.42 -0.34 INF INF
45e No 0.41 0.2 -42 0 14 -0.71 INF INF
45n No 0.41 0.2 -42 0 15 -0.62 INF INF
46e No 0.41 0.21 -42 0 13 -0.56 INF INF 18
46n No 0.41 0.21 -42 0 11 -0.59 INF INF 18
47e Yes -42 1.5E+03 0 0 INF INF
47n Yes -42 1.5E+03 0 0 INF INF
48e Yes -42 1.5E+03 0 0 INF INF
48n Yes -42 1.5E+03 0 0 INF INF
49e Yes -42 1.5E+03 0 0 INF INF
49n Yes -42 1.5E+03 0 0 INF INF
50e No 0.025 0.0011 -42 0 23 0.17 INF INF
50n No 0.025 0.0011 -42 0 18 -0.042 INF INF
51e No 0.023 0.0012 -42 0 19 0.11 INF INF
51n No 0.024 0.0012 -42 0 17 -0.14 INF INF
52e No 0.025 0.0025 -42 0 20 -0.11 INF INF
52n No 0.027 0.0025 -42 0 19 -0.17 INF INF
53e No 0.024 0.0024 -42 0 10 -1.4 INF INF
53n No 0.022 0.0024 -42 0 21 -0.3 INF INF
54e No 0.41 0.19 -42 0 13 -0.67 INF INF
54n No 0.41 0.19 -42 0 14 -0.62 INF INF
55e No 0.41 0.19 -42 0 13 -0.73 INF INF
55n No 0.41 0.19 -42 0 16 -0.68 INF INF
56e No 0.41 0.19 -42 0 33 -0.8 INF INF
56n No 0.42 0.19 -42 0 25 -0.69 INF INF
57e No 0.41 0.2 -42 0 17 -0.72 INF INF
57n No 0.42 0.2 -42 0 11 -0.56 INF INF 18
58e No 0.41 0.19 -42 0 10 -0.64 INF INF
58n No 0.42 0.19 -42 0 19 -0.58 INF INF 18
59e No 0.41 0.2 -42 0 24 -0.75 INF INF
59n No 0.41 0.2 -42 0 15 -0.62 INF INF
60e No 0.41 0.21 -42 0 12 -0.59 INF INF 18
60n No 0.41 0.21 -42 0 4.4 -0.55 INF INF 18
61e Yes -42 1.5E+03 0 0 INF INF
61n Yes -42 1.5E+03 0 0 INF INF
62e Yes -42 1.5E+03 0 0 INF INF
62n Yes -42 1.5E+03 0 0 INF INF
63e Yes -42 1.5E+03 0 0 INF INF
63n Yes -42 1.5E+03 0 0 INF INF
64e Yes -42 1.5E+03 0 0 INF INF
64n Yes -42 1.5E+03 0 0 INF INF
65e No 0.025 0.00062 -42 0 16 0.23 INF INF
65n No 0.023 0.00062 -42 0 17 0.17 INF INF
66e No 0.023 0.0021 -42 0 17 0.24 INF INF
66n No 0.022 0.0021 -42 0 16 0.087 INF INF
67e No 0.021 0.00021 -42 0 18 0.22 INF INF
67n No 0.025 0.00021 -42 0 22 0.082 INF INF
68e No 0.023 -0.0002 -42 0 20 0.12 INF INF
68n No 0.024 -0.0002 -42 0 20 0.017 INF INF
69e No 0.41 0.2 -42 0 12 -0.69 INF INF
69n No 0.41 0.2 -42 0 17 -0.66 INF INF
70e No 0.41 0.19 -42 0 17 -0.74 INF INF
70n No 0.41 0.19 -42 0 6.3 -0.55 INF INF 18
71e No 0.41 0.2 -42 0 15 -0.7 INF INF
71n No 0.41 0.2 -42 0 13 -0.53 INF INF 18
72e No 0.42 0.2 -42 0 12 -0.55 INF INF 18
72n No 0.42 0.2 -42 0 16 -0.64 INF INF
73e No 0.41 0.19 -42 0 14 -0.72 INF INF
73n No 0.41 0.19 -42 0 10 -0.77 INF INF
74e No 0.41 0.2 -42 0 16 -0.73 INF INF
74n No 0.42 0.2 -42 0 12 -0.59 INF INF 18
75e No 0.41 0.2 -42 0 9.6 -0.68 INF INF
75n No 0.41 0.2 -42 0 13 -0.7 INF INF
76e No 0.029 0.0031 -42 0 2.3 -0.37 INF INF
76n No 0.025 0.0031 -42 1 2 -0.36 INF INF
77e Yes -42 1.5E+03 0 0 INF INF
77n Yes -42 1.5E+03 0 0 INF INF
78e Yes -42 1.5E+03 0 0 INF INF
78n Yes -42 1.5E+03 0 0 INF INF
79e No 0.4 0.22 -42 0 18 -0.63 INF INF
79n No 0.4 0.22 -42 0 19 -0.61 INF INF
80e No 0.39 0.23 -42 0 16 -0.61 INF INF
80n No 0.39 0.23 -42 0 8.7 -0.42 INF INF 18
81e No 0.038 0.0066 -42 1 0.58 -1 INF INF
81n No 0.035 0.0066 -42 0 2.9 -1 INF INF
82e No 0.03 0.0032 -42 0 14 -0.54 INF INF
82n No 0.039 0.0032 -42 0 13 -0.56 INF INF
83e No 0.027 0.00069 -42 0 4.1 -0.64 INF INF
83n No 0.037 0.00069 -42 0 13 -0.62 INF INF
84e No 0.4 0.21 -42 0 13 -0.6 INF INF 18
84n No 0.4 0.21 -42 0 14 -0.59 INF INF 18
85e No 0.41 0.2 -42 0 12 -0.81 INF INF
85n No 0.41 0.2 -42 0 13 -0.69 INF INF
86e No 0.41 0.19 -42 0 12 -0.71 INF INF
86n No 0.41 0.19 -42 0 12 -0.59 INF INF 18
87e No 0.39 0.17 -42 0 11 0.29 INF INF 18
87n No 0.42 0.17 -42 0 15 -0.67 INF INF
88e Yes -42 1.5E+03 0 0 INF INF
88n Yes -42 1.5E+03 0 0 INF INF
89e Yes -42 1.5E+03 0 0 INF INF
89n Yes -42 1.5E+03 0 0 INF INF
90e Yes -42 1.5E+03 0 0 INF INF
90n Yes -42 1.5E+03 0 0 INF INF
91e Yes -42 1.5E+03 0 0 INF INF
91n Yes -42 1.5E+03 0 0 INF INF
92e Yes -42 1.5E+03 0 0 INF INF
92n Yes -42 1.5E+03 0 0 INF INF
93e Yes -42 1.5E+03 0 0 INF INF
93n Yes -42 1.5E+03 0 0 INF INF
94e Yes -42 1.5E+03 0 0 INF INF
94n Yes -42 1.5E+03 0 0 INF INF
95e No 0.4 0.23 -42 0 14 -0.61 INF INF
95n No 0.4 0.23 -42 0 20 -0.55 INF INF 18
96e No 0.39 0.23 -42 0 8.4 -0.53 INF INF 18
96n No 0.39 0.23 -42 0 7.9 -0.37 INF INF 18
97e No 0.39 0.23 -42 0 14 -0.68 INF INF
97n No 0.4 0.23 -42 0 36 -0.76 INF INF
98e No 0.04 0.0038 -42 0 8.9 -0.69 INF INF
98n No 0.03 0.0038 -42 0 14 -0.66 INF INF
99e No 0.022 0.01 -42 2 0.048 -0.48 INF INF
99n No 0.042 0.01 -42 1 0.094 -0.81 INF INF
100e No 0.036 0.0028 -42 0 18 -0.66 INF INF
100n No 0.032 0.0028 -42 0 14 -0.52 INF INF
101e No 0.41 0.21 -42 0 13 -0.78 INF INF
101n No 0.41 0.21 -42 0 12 -0.71 INF INF
102e No 0.41 0.2 -42 0 19 -0.86 INF INF
102n No 0.41 0.2 -42 0 18 -0.72 INF INF
103e No 0.41 0.2 -42 0 22 -0.77 INF INF
103n No 0.41 0.2 -42 0 16 -0.73 INF INF
104e No 0.41 0.25 -42 0 9.4 -0.48 INF INF 18
104n No 0.022 0.25 -42 4 0.04 -0.51 INF INF
105e Yes -42 1.5E+03 0 0 INF INF
105n Yes -42 1.5E+03 0 0 INF INF
106e Yes -42 1.5E+03 0 0 INF INF
106n Yes -42 1.5E+03 0 0 INF INF
107e Yes -42 1.5E+03 0 0 INF INF
107n Yes -42 1.5E+03 0 0 INF INF
108e Yes -42 1.5E+03 0 0 INF INF
108n Yes -42 1.5E+03 0 0 INF INF
109e Yes -42 1.5E+03 0 0 INF INF
109n Yes -42 1.5E+03 0 0 INF INF
110e Yes -42 1.5E+03 0 0 INF INF
110n Yes -42 1.5E+03 0 0 INF INF
111e Yes -42 1.5E+03 0 0 INF INF
111n Yes -42 1.5E+03 0 0 INF INF
112e Yes -42 1.5E+03 0 0 INF INF
112n Yes -42 1.5E+03 0 0 INF INF
113e No 0.39 0.23 -42 0 17 -0.62 INF INF
113n No 0.39 0.23 -42 0 13 -0.18 INF INF 18
114e No 0.39 0.22 -42 0 20 -0.66 INF INF
114n No 0.4 0.22 -42 0 15 -0.56 INF INF 18
115e No 0.39 0.23 -42 0 13 -0.67 INF INF
115n No 0.39 0.23 -42 0 9.2 -0.52 INF INF 18
116e No 0.033 0.0047 -42 0 13 -0.77 INF INF
116n No 0.029 0.0047 -42 0 26 -0.63 INF INF
117e No 0.026 0.0012 -42 0 14 -0.56 INF INF
117n No 0.027 0.0012 -42 0 12 -0.56 INF INF
118e No 0.035 0.0044 -42 0 3.1 0.77 INF INF
118n No 0.024 0.0044 -42 0 20 -0.68 INF INF
119e No 0.042 0.0049 -42 0 21 -0.8 INF INF
119n No 0.04 0.0049 -42 1 17 -0.79 INF INF
120e No 0.03 0.28 -42 1 0.47 -0.39 INF INF
120n No 0.41 0.28 -42 0 9.6 -0.6 INF INF
121e No 0.4 0.19 -42 0 5.1 -0.63 INF INF
121n No 0.41 0.19 -42 0 11 -1.1 INF INF
122e No 0.41 0.19 -42 0 12 -1.2 INF INF
122n No 0.41 0.19 -42 0 11 -0.7 INF INF
123e No 0.41 0.18 -42 0 12 -0.86 INF INF
123n No 0.41 0.18 -42 0 13 -0.82 INF INF
124e Yes -42 1.5E+03 0 0 INF INF
124n Yes -42 1.5E+03 0 0 INF INF
125e Yes -42 1.5E+03 0 0 INF INF
125n Yes -42 1.5E+03 0 0 INF INF
126e Yes -42 1.5E+03 0 0 INF INF
126n Yes -42 1.5E+03 0 0 INF INF
127e Yes -42 1.5E+03 0 0 INF INF
127n Yes -42 1.5E+03 0 0 INF INF
128e Yes -42 1.5E+03 0 0 INF INF
128n Yes -42 1.5E+03 0 0 INF INF
129e Yes -42 1.5E+03 0 0 INF INF
129n Yes -42 1.5E+03 0 0 INF INF
130e Yes -42 1.5E+03 0 0 INF INF
130n Yes -42 1.5E+03 0 0 INF INF
131e No 0.39 0.22 -42 0 10 -0.63 INF INF
131n No 0.4 0.22 -42 0 8.8 -0.57 INF INF 18
132e No 0.39 0.22 -42 0 13 -0.64 INF INF
132n No 0.4 0.22 -42 0 13 -0.57 INF INF 18
133e No 0.39 0.23 -42 0 13 -0.62 INF INF
133n No 0.4 0.23 -42 0 13 -0.52 INF INF 18
134e No 0.39 0.23 -42 0 23 -0.72 INF INF
134n No 0.39 0.23 -42 0 12 -0.47 INF INF 18
135e No 0.031 0.27 -42 1 1.7 1.3 INF INF
135n No 0.39 0.27 -42 0 13 -0.64 INF INF
136e No 0.38 0.23 -42 0 15 -0.73 INF INF
136n No 0.39 0.23 -42 0 11 -0.31 INF INF 18
137e No 0.019 0.0015 -42 0 0.52 -0.38 INF INF
137n No 0.02 0.0015 -42 0 0.48 -0.33 INF INF
138e No 0.024 0.0019 -42 0 15 -0.69 INF INF
138n No 0.043 0.0019 -42 0 11 -0.64 INF INF
139e No 0.4 0.21 -42 0 26 -0.71 INF INF
139n No 0.4 0.21 -42 0 22 -0.62 INF INF
140e No 0.4 0.19 -42 0 12 -0.43 INF INF 18
140n No 0.4 0.19 -42 0 13 -0.61 INF INF
141e No 0.41 0.19 -42 0 14 -0.7 INF INF
141n No 0.41 0.19 -42 0 14 -0.65 INF INF
142e No 0.41 0.18 -42 0 16 -0.66 INF INF
142n No 0.41 0.18 -42 0 13 -0.65 INF INF
143e No 0.41 0.19 -42 0 19 -0.8 INF INF
143n No 0.41 0.19 -42 0 20 -0.87 INF INF
144e No 0.41 0.19 -42 0 12 -0.68 INF INF
144n No 0.41 0.19 -42 0 16 -0.77 INF INF
145e No 0.41 0.19 -42 0 13 -0.72 INF INF
145n No 0.41 0.19 -42 0 13 -0.58 INF INF 18
146e No 0.41 0.2 -42 0 14 -0.61 INF INF
146n No 0.41 0.2 -42 0 14 -0.53 INF INF 18
147e Yes -42 1.5E+03 0 0 INF INF
147n Yes -42 1.5E+03 0 0 INF INF
148e Yes -42 1.5E+03 0 0 INF INF
148n Yes -42 1.5E+03 0 0 INF INF
149e Yes -42 1.5E+03 0 0 INF INF
149n Yes -42 1.5E+03 0 0 INF INF
150e No 0.4 0.21 -42 0 14 -0.69 INF INF
150n No 0.4 0.21 -42 0 12 -0.55 INF INF 18
152e No 0.4 0.22 -42 0 14 -0.74 INF INF
152n No 0.4 0.22 -42 0 13 -0.57 INF INF 18
153e No 0.39 0.23 -42 0 13 -0.67 INF INF
153n No 0.4 0.23 -42 0 15 -0.63 INF INF
154e No 0.39 0.23 -42 0 16 -0.66 INF INF
154n No 0.39 0.23 -42 0 13 -0.54 INF INF 18
155e No 0.39 0.24 -42 0 14 -0.72 INF INF
155n No 0.4 0.24 -42 0 15 -0.63 INF INF
156e No 0.39 0.23 -42 0 14 -1.1 INF INF
156n No 0.4 0.23 -42 0 11 -0.68 INF INF
157e No 0.4 0.22 -42 1 12 -0.72 INF INF
157n No 0.4 0.22 -42 0 13 -0.65 INF INF
158e No 0.4 0.22 -42 0 13 -0.63 INF INF
158n No 0.41 0.22 -42 0 13 -0.59 INF INF 18
159e No 0.4 0.21 -42 0 9.7 -0.55 INF INF 18
159n No 0.4 0.21 -42 0 14 -0.54 INF INF 18
160e No 0.41 0.2 -42 0 11 -0.75 INF INF
160n No 0.41 0.2 -42 0 14 -0.63 INF INF
161e No 0.41 0.2 -42 0 16 -0.8 INF INF
161n No 0.38 0.2 -42 0 9.7 0.36 INF INF 18
162e No 0.41 0.19 -42 0 15 -0.64 INF INF
162n No 0.41 0.19 -42 0 14 -0.57 INF INF 18
163e No 0.41 0.19 -42 0 8.2 -0.73 INF INF
163n No 0.42 0.19 -42 0 12 -0.74 INF INF
164e No 0.41 0.19 -42 0 10 -0.49 INF INF 18
164n No 0.42 0.19 -42 0 10 -0.62 INF INF
165e No 0.41 0.19 -42 0 9 -0.8 INF INF
165n No 0.41 0.19 -42 0 7 -0.69 INF INF
166e No 0.42 0.2 -42 0 13 -0.69 INF INF
166n No 0.42 0.2 -42 0 11 -0.54 INF INF 18
167e No 0.41 0.21 -42 0 14 -0.7 INF INF
167n No 0.41 0.21 -42 0 29 -0.73 INF INF
168e No 0.41 0.21 -42 0 17 -0.91 INF INF
168n No 0.41 0.21 -42 0 11 -0.87 INF INF
169e No 0.4 0.19 -42 0 5.8 -0.66 INF INF
169n No 0.41 0.19 -42 0 14 -0.85 INF INF
170e No 0.033 0.27 -42 1 0.45 -0.36 INF INF
170n No 0.41 0.27 -42 0 13 -0.65 INF INF
173e No 0.39 0.23 -42 0 12 -0.6 INF INF
173n No 0.4 0.23 -42 1 13 -0.54 INF INF 18
174e No 0.39 0.23 -42 0 15 -0.63 INF INF
174n No 0.39 0.23 -42 0 23 -0.57 INF INF 18
175e No 0.38 0.25 -42 0 7.2 -0.25 INF INF 18
175n No 0.39 0.25 -42 0 61 -0.95 INF INF
176e No 0.39 0.24 -42 0 35 -0.85 INF INF
176n No 0.4 0.24 -42 0 13 -1.1 INF INF
177e No 0.39 0.23 -42 0 8.4 -1.3 INF INF
177n No 0.39 0.23 -42 0 14 -0.88 INF INF
178e No 0.4 0.23 -42 0 21 -0.69 INF INF
178n No 0.4 0.23 -42 0 33 -0.8 INF INF
179e No 0.39 0.21 -42 0 12 -0.64 INF INF
179n No 0.4 0.21 -42 0 15 -0.66 INF INF
180e No 0.4 0.2 -42 0 16 -0.78 INF INF
180n No 0.39 0.2 -42 0 11 -0.03 INF INF 18
181e No 0.41 0.2 -42 1 14 -0.79 INF INF
181n No 0.41 0.2 -42 0 19 -0.74 INF INF
182e No 0.41 0.2 -42 0 9.2 -0.61 INF INF
182n No 0.42 0.2 -42 0 18 -0.7 INF INF
183e No 0.41 0.19 -42 0 16 -0.71 INF INF
183n No 0.42 0.19 -42 0 16 -0.67 INF INF
184e No 0.41 0.19 -42 0 13 -0.68 INF INF
184n No 0.41 0.19 -42 0 22 -0.7 INF INF
185e No 0.41 0.17 -42 0 12 0.36 INF INF 18
185n No 0.42 0.17 -42 0 20 -0.66 INF INF
186e No 0.42 0.19 -42 0 15 -0.67 INF INF
186n No 0.42 0.19 -42 0 14 -0.48 INF INF 18
187e No 0.42 0.2 -42 0 15 -0.7 INF INF
187n No 0.41 0.2 -42 0 31 -0.77 INF INF
188e No 0.41 0.22 -42 0 14 -0.65 INF INF
188n No 0.4 0.22 -42 0 25 -0.23 INF INF 18
189e No 0.41 0.21 -42 0 12 -0.72 INF INF
189n No 0.41 0.21 -42 0 19 -0.74 INF INF
190e No 0.41 0.22 -42 0 14 -0.65 INF INF
190n No 0.41 0.22 -42 0 12 -0.61 INF INF
191e No 0.4 0.22 -42 0 15 -0.72 INF INF
191n No 0.41 0.22 -42 0 23 -0.68 INF INF
192e No 0.4 0.23 -42 0 17 -0.64 INF INF
192n No 0.4 0.23 -42 0 21 -0.59 INF INF 18
193e No 0.39 0.23 -42 0 14 -0.52 INF INF 18
193n No 0.4 0.23 -42 0 12 -0.53 INF INF 18
194e No 0.4 0.24 -42 0 13 -0.72 INF INF
194n No 0.4 0.24 -42 0 18 -0.71 INF INF
195e No 0.39 0.24 -42 0 17 -0.68 INF INF
195n No 0.4 0.24 -42 0 15 -0.55 INF INF 18
196e No 0.025 -0.00078 -42 6.7E+02 12 2.6 INF INF
196n No 0.027 -0.00078 -42 6.7E+02 9.4 2.6 INF INF
197e No 0.028 0.00094 -42 6.7E+02 9.1 2.7 INF INF
197n No 0.027 0.00094 -42 6.7E+02 12 2.7 INF INF
198e No 0.027 0.0005 -42 6.7E+02 15 2.6 INF INF
198n No 0.027 0.0005 -42 6.7E+02 16 2.8 INF INF
200e No 0.033 0.28 -42 0 2.2 -0.35 INF INF
200n No 0.41 0.28 -42 0 16 -0.68 INF INF
201e No 0.4 0.21 -42 0 41 -0.69 INF INF
201n No 0.41 0.21 -42 0 51 -0.86 INF INF
202e No 0.41 0.2 -42 0 24 -0.7 INF INF
202n No 0.41 0.2 -42 0 15 -0.52 INF INF 18
203e No 0.41 0.18 -42 0 12 -0.69 INF INF
203n No 0.42 0.18 -42 0 13 -0.69 INF INF
204e No 0.42 0.19 -42 0 11 -0.98 INF INF
204n No 0.42 0.19 -42 0 10 -0.98 INF INF
205e No 0.41 0.2 -42 0 17 -0.7 INF INF
205n No 0.42 0.2 -42 0 16 -0.63 INF INF
206e No 0.4 0.2 -42 0 13 -0.71 INF INF
206n No 0.41 0.2 -42 0 13 -0.81 INF INF
207e No 0.41 0.2 -42 0 18 -0.68 INF INF
207n No 0.4 0.2 -42 0 13 -0.45 INF INF 18
208e Yes -42 1.5E+03 0 0 INF INF
208n Yes -42 1.5E+03 0 0 INF INF
209e Yes -42 1.5E+03 0 0 INF INF
209n Yes -42 1.5E+03 0 0 INF INF
210e Yes -42 1.5E+03 0 0 INF INF
210n Yes -42 1.5E+03 0 0 INF INF
211e Yes -42 1.5E+03 0 0 INF INF
211n Yes -42 1.5E+03 0 0 INF INF
212e No 0.4 0.26 -42 0 18 -0.72 INF INF
212n No 0.37 0.26 -42 0 3.6 0.2 INF INF 18
213e No 0.4 0.24 -42 0 12 -0.65 INF INF
213n No 0.4 0.24 -42 0 14 -0.6 INF INF
214e No 0.39 0.24 -42 0 15 -0.65 INF INF
214n No 0.4 0.24 -42 0 14 -0.53 INF INF 18
215e No 0.029 -0.00068 -42 6.7E+02 17 2.6 INF INF
215n No 0.027 -0.00068 -42 6.7E+02 7.5 2.7 INF INF
216e No 0.029 0.0033 -42 6.7E+02 13 2.6 INF INF
216n No 0.028 0.0033 -42 6.7E+02 7 2.7 INF INF
217e No 0.029 0.00086 -42 6.7E+02 13 2.6 INF INF
217n No 0.028 0.00086 -42 6.7E+02 8.4 2.6 INF INF
218e No 0.032 0.0029 -42 1.2E+03 16 2.6 INF INF
218n No 0.028 0.0029 -42 1.2E+03 0.26 2.7 INF INF
219e No 0.4 0.2 -42 0 17 -0.7 INF INF
219n No 0.4 0.2 -42 0 13 -0.55 INF INF 18
220e No 0.41 0.2 -42 0 15 -0.65 INF INF
220n No 0.41 0.2 -42 0 12 -0.59 INF INF 18
221e No 0.41 0.2 -42 0 19 -0.69 INF INF
221n No 0.41 0.2 -42 0 12 -0.54 INF INF 18
222e No 0.41 0.19 -42 0 14 -0.6 INF INF 18
222n No 0.41 0.19 -42 0 20 -0.62 INF INF
223e No 0.41 0.21 -42 0 14 -0.71 INF INF
223n No 0.42 0.21 -42 0 23 -0.75 INF INF
224e No 0.41 0.2 -42 0 17 -0.52 INF INF 18
224n No 0.41 0.2 -42 0 16 -0.6 INF INF
225e Yes -42 1.5E+03 0 0 INF INF
225n Yes -42 1.5E+03 0 0 INF INF
226e Yes -42 1.5E+03 0 0 INF INF
226n Yes -42 1.5E+03 0 0 INF INF
227e Yes -42 1.5E+03 0 0 INF INF
227n Yes -42 1.5E+03 0 0 INF INF
228e Yes -42 1.5E+03 0 0 INF INF
228n Yes -42 1.5E+03 0 0 INF INF
229e Yes -42 1.5E+03 0 0 INF INF
229n Yes -42 1.5E+03 0 0 INF INF
231e No 0.4 0.23 -42 0 23 -1.5 INF INF
231n No 0.4 0.23 -42 0 24 -0.81 INF INF
232e No 0.39 0.24 -42 0 32 -0.79 INF INF
232n No 0.39 0.24 -42 0 12 -0.54 INF INF 18
233e No 0.032 0.0031 -42 1.2E+03 21 2.6 INF INF
233n No 0.028 0.0031 -42 1.2E+03 26 2.7 INF INF
234e No 0.031 0.00077 -42 1.2E+03 16 2.6 INF INF
234n No 0.029 0.00077 -42 1.2E+03 16 2.6 INF INF
237e No 0.41 0.2 -42 0 14 -0.63 INF INF
237n No 0.41 0.2 -42 0 14 -0.55 INF INF 18
238e No 0.41 0.2 -42 0 24 -0.74 INF INF
238n No 0.41 0.2 -42 0 15 -0.57 INF INF 18
239e No 0.41 0.2 -42 0 14 -0.72 INF INF
239n No 0.41 0.2 -42 0 20 -0.74 INF INF
240e Yes -42 1.5E+03 0 0 INF INF
240n Yes -42 1.5E+03 0 0 INF INF
241e No 0.41 0.21 -42 0 15 -0.69 INF INF
241n No 0.41 0.21 -42 0 13 -0.51 INF INF 18
242e No 0.41 0.21 -42 0 19 -0.77 INF INF
242n No 0.41 0.21 -42 0 24 -0.74 INF INF
243e No 0.4 0.21 -42 0 23 -0.049 INF INF 18
243n No 0.41 0.21 -42 0 14 -0.6 INF INF
244e Yes -42 1.5E+03 0 0 INF INF
244n Yes -42 1.5E+03 0 0 INF INF
245e Yes -42 1.5E+03 0 0 INF INF
245n Yes -42 1.5E+03 0 0 INF INF
246e Yes -42 1.5E+03 0 0 INF INF
246n Yes -42 1.5E+03 0 0 INF INF
250e No 0.39 0.23 -42 0 16 -0.66 INF INF
250n No 0.39 0.23 -42 0 12 -0.53 INF INF 18
251e No 0.051 0.064 -42 0 3.8 -0.26 INF INF
251n No 0.18 0.064 -42 0 16 -0.68 INF INF
252e No 0.4 0.21 -42 1 22 -0.75 INF INF
252n No 0.4 0.21 -42 0 13 -0.72 INF INF
253e No 0.4 0.21 -42 0 14 -0.63 INF INF
253n No 0.4 0.21 -42 0 8.5 -0.53 INF INF 18
254e No 0.41 0.2 -42 0 26 -0.72 INF INF
254n No 0.4 0.2 -42 0 22 -0.6 INF INF 18
255e No 0.41 0.2 -42 0 15 -0.64 INF INF
255n No 0.41 0.2 -42 0 33 -0.81 INF INF
256e No 0.4 0.2 -42 0 20 -0.59 INF INF 18
256n No 0.41 0.2 -42 0 12 -0.58 INF INF 18
257e Yes -42 1.5E+03 0 0 INF INF
257n Yes -42 1.5E+03 0 0 INF INF
261e Yes -42 1.5E+03 0 0 INF INF
261n Yes -42 1.5E+03 0 0 INF INF
262e Yes -42 1.5E+03 0 0 INF INF
262n Yes -42 1.5E+03 0 0 INF INF
266e No 0.4 0.22 -42 0 8.3 -1 INF INF
266n No 0.4 0.22 -42 0 11 -1 INF INF
267e No 0.4 0.21 -42 0 20 -0.82 INF INF
267n No 0.4 0.21 -42 0 14 -0.96 INF INF
268e No 0.4 0.21 -42 0 8 -0.59 INF INF 18
268n No 0.4 0.21 -42 0 14 -0.54 INF INF 18
269e No 0.4 0.21 -42 0 22 -0.68 INF INF
269n No 0.41 0.21 -42 0 31 -0.77 INF INF
270e Yes -42 1.5E+03 0 0 INF INF
270n Yes -42 1.5E+03 0 0 INF INF
271e Yes -42 1.5E+03 0 0 INF INF
271n Yes -42 1.5E+03 0 0 INF INF
272e Yes -42 1.5E+03 0 0 INF INF
272n Yes -42 1.5E+03 0 0 INF INF
273e Yes -42 1.5E+03 0 0 INF INF
273n Yes -42 1.5E+03 0 0 INF INF
277e No 0.028 0.0036 -42 0 11 0.1 INF INF
277n No 0.029 0.0036 -42 0 30 -0.69 INF INF
278e No 0.037 0.0032 -42 0 20 -0.69 INF INF
278n No 0.031 0.0032 -42 0 12 -0.71 INF INF
281e No 0.39 0.22 -42 0 14 -0.65 INF INF
281n No 0.4 0.22 -42 0 12 -0.61 INF INF
282e No 0.4 0.21 -42 0 15 -0.65 INF INF
282n No 0.4 0.21 -42 0 26 -0.78 INF INF
283e No 0.4 0.19 -42 0 19 -0.9 INF INF
283n No 0.41 0.19 -42 0 18 -0.7 INF INF
284e Yes -42 1.5E+03 0 0 INF INF
284n Yes -42 1.5E+03 0 0 INF INF
285e Yes -42 1.5E+03 0 0 INF INF
285n Yes -42 1.5E+03 0 0 INF INF
286e Yes -42 1.5E+03 0 0 INF INF
286n Yes -42 1.5E+03 0 0 INF INF
287e Yes -42 1.5E+03 0 0 INF INF
287n Yes -42 1.5E+03 0 0 INF INF
290e No 0.4 0.22 -42 0 56 -0.89 INF INF
290n No 0.4 0.22 -42 0 57 -0.88 INF INF
291e No 0.4 0.35 -42 0 57 -0.91 INF INF
291n No 0.058 0.35 -42 1 0.44 -0.91 INF INF
292e No 0.026 0.0018 -42 0 19 -0.68 INF INF
292n No 0.035 0.0018 -42 0 27 -0.69 INF INF
293e No 0.03 0.0047 -42 0 21 -0.7 INF INF
293n No 0.025 0.0047 -42 0 9.4 -0.54 INF INF
294e No 0.036 0.0034 -42 0 34 -0.57 INF INF
294n No 0.033 0.0034 -42 0 38 -0.85 INF INF
295e No 0.4 0.32 -42 0 3.9 -1.1 INF INF
295n No 0.03 0.32 -42 0 0.66 -0.86 INF INF
299e Yes -42 1.5E+03 0 0 INF INF
299n Yes -42 1.5E+03 0 0 INF INF
300e Yes -42 1.5E+03 0 0 INF INF
300n Yes -42 1.5E+03 0 0 INF INF
301e Yes -42 1.5E+03 0 0 INF INF
301n Yes -42 1.5E+03 0 0 INF INF
302e Yes -42 1.5E+03 0 0 INF INF
302n Yes -42 1.5E+03 0 0 INF INF
303e No 0.4 0.3 -42 0 32 -0.43 INF INF 18
303n No 0.031 0.3 -42 0 2.2 -0.31 INF INF
304e No 0.41 0.22 -42 0 28 -0.76 INF INF
304n No 0.41 0.22 -42 0 32 -0.79 INF INF
305e No 0.4 0.23 -42 0 14 -0.7 INF INF
305n No 0.41 0.23 -42 0 26 -0.74 INF INF
306e No 0.034 0.0026 -42 0 18 -0.74 INF INF
306n No 0.028 0.0026 -42 0 27 -0.19 INF INF
307e No 0.032 0.0021 -42 0 22 -0.094 INF INF
307n No 0.037 0.0021 -42 0 32 -0.79 INF INF
311e Yes -42 1.5E+03 0 0 INF INF
311n Yes -42 1.5E+03 0 0 INF INF
312e Yes -42 1.5E+03 0 0 INF INF
312n Yes -42 1.5E+03 0 0 INF INF
313e Yes -42 1.5E+03 0 0 INF INF
313n Yes -42 1.5E+03 0 0 INF INF
314e Yes -42 1.5E+03 0 0 INF INF
314n Yes -42 1.5E+03 0 0 INF INF
315e No 0.4 0.23 -42 0 56 -0.92 INF INF
315n No 0.4 0.23 -42 0 58 -0.9 INF INF
316e No 0.41 0.23 -42 0 38 -0.84 INF INF
316n No 0.41 0.23 -42 0 41 -0.8 INF INF
317e No 0.4 0.23 -42 0 24 -0.8 INF INF
317n No 0.4 0.23 -42 0 12 -0.67 INF INF
318e No 0.4 0.24 -42 0 48 -0.95 INF INF
318n No 0.4 0.24 -42 0 57 -0.95 INF INF
319e No 0.034 0.0022 -42 0 19 -0.71 INF INF
319n No 0.039 0.0022 -42 0 21 -0.7 INF INF
320e No 0.023 0.0017 -42 0 1.4 0.92 INF INF
320n No 0.023 0.0017 -42 0 1.3 0.85 INF INF
321e No 0.37 0.24 -42 0 49 -0.93 INF INF
321n No 0.37 0.24 -42 0 44 -0.91 INF INF
322e No 0.37 0.23 -42 0 39 -0.83 INF INF
322n No 0.33 0.23 -42 0 5.9 -0.43 INF INF
323e No 0.33 0.22 -42 0 10 -0.66 INF INF
323n No 0.32 0.22 -42 0 22 -0.69 INF INF
324e No 0.32 0.22 -42 0 22 -0.72 INF INF
324n No 0.33 0.22 -42 0 23 -0.7 INF INF
325e Yes -42 1.5E+03 0 0 INF INF
325n Yes -42 1.5E+03 0 0 INF INF
326e No 0.031 0.0013 -42 0 2.5 -0.38 INF INF
326n No 0.032 0.0013 -42 0 2.1 -0.35 INF INF
327e No 0.36 0.24 -42 0 29 -0.77 INF INF
327n No 0.37 0.24 -42 0 19 -0.68 INF INF
328e Yes -42 1.5E+03 0 0 INF INF
328n Yes -42 1.5E+03 0 0 INF INF
329e No 0.32 0.22 -42 0 14 -0.61 INF INF
329n No 0.33 0.22 -42 0 17 -0.17 INF INF
331e No 0.37 0.23 -42 0 22 -0.75 INF INF
331n No 0.36 0.23 -42 0 17 -0.64 INF INF
332e No 0.36 0.25 -42 0 23 -0.74 INF INF
332n No 0.36 0.25 -42 0 9.7 -0.55 INF INF 18
333e No 0.32 0.24 -42 0 7.2 -0.71 INF INF
333n No 0.35 0.24 -42 0 11 -1 INF INF
336e No 0.11 -0.23 -42 0 34 -0.72 INF INF
336n No 0.11 -0.23 -42 0 13 -0.91 INF INF
339e Yes -42 1.5E+03 0 0 INF INF
339n Yes -42 1.5E+03 0 0 INF INF
340e No 0.34 0.25 -42 0 30 -0.87 INF INF
340n No 0.36 0.25 -42 0 22 -0.73 INF INF
342e Yes -42 1.5E+03 0 0 INF INF
342n Yes -42 1.5E+03 0 0 INF INF
343e Yes -42 1.5E+03 0 0 INF INF
343n Yes -42 1.5E+03 0 0 INF INF
345e Yes -42 1.5E+03 0 0 INF INF
345n Yes -42 1.5E+03 0 0 INF INF
346e Yes -42 1.5E+03 0 0 INF INF
346n Yes -42 1.5E+03 0 0 INF INF
347e Yes -42 1.5E+03 0 0 INF INF
347n Yes -42 1.5E+03 0 0 INF INF
In [59]:
# Save antenna classification table as a csv
if SAVE_RESULTS:
    for ind, col in zip(np.arange(len(df.columns), 0, -1), df_classes.columns[::-1]):
        df.insert(int(ind), col + ' Class', df_classes[col])
    df.to_csv(ANTCLASS_FILE)    
In [60]:
print('Final Ant-Pol Classification:\n\n', overall_class)
Final Ant-Pol Classification:

 Jee:
----------
bad (299 antpols):
3, 4, 5, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 21, 22, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 250, 251, 252, 253, 254, 255, 256, 257, 261, 262, 266, 267, 268, 269, 270, 271, 272, 273, 277, 278, 281, 282, 283, 284, 285, 286, 287, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 336, 339, 340, 342, 343, 345, 346, 347


Jnn:
----------
bad (299 antpols):
3, 4, 5, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 21, 22, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 250, 251, 252, 253, 254, 255, 256, 257, 261, 262, 266, 267, 268, 269, 270, 271, 272, 273, 277, 278, 281, 282, 283, 284, 285, 286, 287, 290, 291, 292, 293, 294, 295, 299, 300, 301, 302, 303, 304, 305, 306, 307, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 336, 339, 340, 342, 343, 345, 346, 347

Save calibration solutions¶

In [61]:
if not all_flagged():
    # update flags in omnical gains and visibility solutions
    for ant in omni_flags:
        omni_flags[ant] |= rfi_flags
    for bl in vissol_flags:
        vissol_flags[bl] |= rfi_flags
All antennas are flagged, so this cell is being skipped.
In [62]:
if SAVE_RESULTS:
    add_to_history = 'Produced by file_calibration notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65    
    
    if not all_flagged():
        hd_vissol = io.HERAData(SUM_FILE)
        hc_omni = hd_vissol.init_HERACal(gain_convention='divide', cal_style='redundant')
        hc_omni.pol_convention = hd_auto_model.pol_convention
        hc_omni.gain_scale = hd_auto_model.vis_units
        hc_omni.update(gains=sol.gains, flags=omni_flags, quals=meta['chisq_per_ant'], total_qual=meta['chisq'])
        hc_omni.history += add_to_history
        hc_omni.write_calfits(OMNICAL_FILE, clobber=True)
        del hc_omni
        malloc_trim()
        
        if SAVE_OMNIVIS_FILE:
            # output results, harmonizing keys over polarizations
            all_reds = redcal.get_reds(hd.data_antpos, pols=['ee', 'nn', 'en', 'ne'], pol_mode='4pol', bl_error_tol=2.0)
            bl_to_red_map = {bl: red[0] for red in all_reds for bl in red}
            hd_vissol.read(bls=[bl_to_red_map[bl] for bl in sol.vis], return_data=False)
            hd_vissol.empty_arrays()
            hd_vissol.history += add_to_history
            hd_vissol.update(data={bl_to_red_map[bl]: sol.vis[bl] for bl in sol.vis}, 
                             flags={bl_to_red_map[bl]: vissol_flags[bl] for bl in vissol_flags}, 
                             nsamples={bl_to_red_map[bl]: vissol_nsamples[bl] for bl in vissol_nsamples})
            hd_vissol.pol_convention = hd_auto_model.pol_convention
            hd_vissol.vis_units = hd_auto_model.vis_units
            hd_vissol.write_uvh5(OMNIVIS_FILE, clobber=True)
    
        del hd_vissol
        malloc_trim()        
All antennas are flagged, so this cell is being skipped.

Output fully flagged calibration file if OMNICAL_FILE is not written¶

In [63]:
if SAVE_RESULTS and not os.path.exists(OMNICAL_FILE):
    print(f'WARNING: No calibration file produced at {OMNICAL_FILE}. Creating a fully-flagged placeholder calibration file.')
    hd_writer = io.HERAData(SUM_FILE)
    # create fully flagged unit gains with chi^2 = 0
    hc_omni = hd_writer.init_HERACal(gain_convention='divide', cal_style='redundant')
    hc_omni.history += add_to_history
    hc_omni.pol_convention = hd_auto_model.pol_convention
    hc_omni.gain_scale = hd_auto_model.vis_units
    hc_omni.write_calfits(OMNICAL_FILE, clobber=True)
    del hc_omni
WARNING: No calibration file produced at /mnt/sn1/data1/2460989/zen.2460989.43846.sum.omni.calfits. Creating a fully-flagged placeholder calibration file.

Output empty visibility file if OMNIVIS_FILE is not written¶

In [64]:
if SAVE_RESULTS and SAVE_OMNIVIS_FILE and not os.path.exists(OMNIVIS_FILE):
    print(f'WARNING: No omnivis file produced at {OMNIVIS_FILE}. Creating an empty visibility solution file.')
    hd_writer = io.HERAData(SUM_FILE)
    hd_writer.initialize_uvh5_file(OMNIVIS_FILE, clobber=True)

Metadata¶

In [65]:
for repo in ['pyuvdata', 'hera_cal', 'hera_filters', 'hera_qm', 'hera_notebook_templates']:
    exec(f'from {repo} import __version__')
    print(f'{repo}: {__version__}')
pyuvdata: 3.2.5.dev1+g5a985ae31
hera_cal: 3.7.7.dev68+g3286222d3
hera_filters: 0.1.7
hera_qm: 2.2.1.dev4+gf6d02113b
hera_notebook_templates: 0.1.dev989+gee0995d
In [66]:
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 2.68 minutes.